已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label

极线几何 人工智能 稳健性(进化) 计算机科学 体积热力学 基本矩阵(线性微分方程) 区间(图论) 推论 计算机视觉 数学 图像(数学) 数学分析 生物化学 化学 物理 量子力学 组合数学 基因
作者
Jiahao Chang,Jianfeng He,Tianzhu Zhang,Jiyang Yu,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 753-766
标识
DOI:10.1109/tip.2023.3347929
摘要

Recent learning-based methods demonstrate their strong ability to estimate depth for multi-view stereo reconstruction. However, most of these methods directly extract features via regular or deformable convolutions, and few works consider the alignment of the receptive fields between views while constructing the cost volume. Through analyzing the constraint and inference of previous MVS networks, we find that there are still some shortcomings that hinder the performance. To deal with the above issues, we propose an Epipolar-Guided Multi-View Stereo Network with Interval-Aware Label (EI-MVSNet), which includes an epipolar-guided volume construction module and an interval-aware depth estimation module in a unified architecture for MVS. The proposed EI-MVSNet enjoys several merits. First, in the epipolar-guided volume construction module, we construct cost volume with features from aligned receptive fields between different pairs of reference and source images via epipolar-guided convolutions, which take rotation and scale changes into account. Second, in the interval-aware depth estimation module, we attempt to supervise the cost volume directly and make depth estimation independent of extraneous values by perceiving the upper and lower boundaries, which can achieve fine-grained predictions and enhance the reasoning ability of the network. Extensive experimental results on two standard benchmarks demonstrate that our EI-MVSNet performs favorably against state-of-the-art MVS methods. Specifically, our EI-MVSNet ranks 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小胶质完成签到 ,获得积分20
刚刚
hugeng发布了新的文献求助10
2秒前
王一完成签到,获得积分20
2秒前
约定完成签到,获得积分10
3秒前
4秒前
4秒前
一只小胶质关注了科研通微信公众号
4秒前
4秒前
隐形曼青应助满锅采纳,获得10
5秒前
Pistol发布了新的文献求助10
5秒前
小蘑菇应助猜猜我是谁采纳,获得10
5秒前
6秒前
RNNNLL应助静水流深采纳,获得20
6秒前
科目三应助KKUMee采纳,获得10
6秒前
cgm2025020958完成签到 ,获得积分10
6秒前
wang完成签到,获得积分10
6秒前
ncjdoi完成签到,获得积分10
6秒前
ACE发布了新的文献求助10
7秒前
李健应助Yuetler采纳,获得30
7秒前
柯擎汉发布了新的文献求助10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
浮世清欢发布了新的文献求助10
10秒前
研友_VZG7GZ应助重要无招采纳,获得10
13秒前
浮游应助YYY采纳,获得10
14秒前
科研通AI6应助科研狗采纳,获得10
15秒前
15秒前
浮游应助王一采纳,获得10
15秒前
希望天下0贩的0应助王一采纳,获得10
15秒前
16秒前
16秒前
18秒前
阔达的沛儿完成签到 ,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076248
求助须知:如何正确求助?哪些是违规求助? 4295778
关于积分的说明 13385599
捐赠科研通 4117660
什么是DOI,文献DOI怎么找? 2254921
邀请新用户注册赠送积分活动 1259516
关于科研通互助平台的介绍 1192311