Adoption of ChatGPT by university students for academic purposes: Partial least square, artificial neural network, deep neural network and classification algorithms approach

人工神经网络 人工智能 计算机科学 算法 平方(代数) 时滞神经网络 机器学习 数学 几何学
作者
Arif Mahmud,Afjal H. Sarower,Amir Sohel,Md Assaduzzaman,Touhid Bhuiyan
出处
期刊:Array [Elsevier]
卷期号:21: 100339-100339 被引量:6
标识
DOI:10.1016/j.array.2024.100339
摘要

Given the limited extent of study conducted on the application of ChatGPT in the realm of education, this domain still needs to be explored. Consequently, the primary objective of this study is to evaluate the impact of factors within the extended value-based adoption model (VAM) and to delineate the individual contributions of these factors toward shaping the attitudes of university students regarding the utilization of ChatGPT for instructional purposes. This investigation incorporates dimensions such as social influence, self-efficacy, and personal innovativeness to augment the VAM. This augmentation aims to identify components where a hybrid approach, integrating partial least squares (PLS), artificial neural networks (ANN), deep neural networks (DNN), and classification algorithms, is employed to accurately discern both linear and nonlinear correlations. The data for this study were obtained through an online survey administered to university students, and a purposive sample technique was employed to select 369 valid responses. Following the initial data preparation, the assessment process comprised three successive stages: PLS, ANN, DNN and classification algorithms analysis. Intention is influenced by attitude, which is predicted by perceived usefulness, perceived enjoyment, social influence, self-efficacy, and personal innovativeness. Moreover, personal innovativeness has the maximum contribution to attitude followed by self-efficacy, enjoyment, usefulness, social influence, technicality, and cost. These findings will support the creation and prioritization of student-centered educational services. Additionally, this study can contribute to creating an efficient learning management system to enhance students' academic performance and professional efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佚名完成签到,获得积分10
刚刚
xxy发布了新的文献求助10
1秒前
kid1412完成签到 ,获得积分10
1秒前
张三万完成签到,获得积分10
1秒前
1秒前
奇美拉发布了新的文献求助10
1秒前
Ac发布了新的文献求助10
2秒前
橘11发布了新的文献求助10
2秒前
Provence完成签到,获得积分10
2秒前
3秒前
ronaldo应助栀子采纳,获得10
3秒前
muyi完成签到,获得积分10
3秒前
FashionBoy应助lu2025采纳,获得10
3秒前
甜蜜发带完成签到 ,获得积分0
3秒前
跳跃的惮完成签到,获得积分10
3秒前
4秒前
4秒前
kuikui1100完成签到,获得积分10
4秒前
4秒前
ns完成签到,获得积分10
4秒前
zozox完成签到 ,获得积分10
5秒前
乐观的海发布了新的文献求助10
5秒前
冷傲松鼠完成签到 ,获得积分10
5秒前
阿仔完成签到,获得积分10
5秒前
6秒前
姚小米完成签到,获得积分10
6秒前
加减乘除发布了新的文献求助10
6秒前
lili完成签到,获得积分10
6秒前
上官若男应助Linxiu采纳,获得10
6秒前
Ziven完成签到,获得积分10
7秒前
欣喜灵波完成签到,获得积分10
7秒前
7秒前
思源应助shadow采纳,获得10
7秒前
CipherSage应助JacksonHe采纳,获得10
7秒前
7秒前
滚滚发布了新的文献求助10
7秒前
8秒前
爆米花应助RUIRUI采纳,获得10
8秒前
超帅的遥完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433563
求助须知:如何正确求助?哪些是违规求助? 4545956
关于积分的说明 14199843
捐赠科研通 4465748
什么是DOI,文献DOI怎么找? 2447658
邀请新用户注册赠送积分活动 1438788
关于科研通互助平台的介绍 1415767