Adoption of ChatGPT by university students for academic purposes: Partial least square, artificial neural network, deep neural network and classification algorithms approach

人工神经网络 人工智能 计算机科学 算法 平方(代数) 时滞神经网络 机器学习 数学 几何学
作者
Arif Mahmud,Afjal H. Sarower,Amir Sohel,Md Assaduzzaman,Touhid Bhuiyan
出处
期刊:Array [Elsevier BV]
卷期号:21: 100339-100339 被引量:6
标识
DOI:10.1016/j.array.2024.100339
摘要

Given the limited extent of study conducted on the application of ChatGPT in the realm of education, this domain still needs to be explored. Consequently, the primary objective of this study is to evaluate the impact of factors within the extended value-based adoption model (VAM) and to delineate the individual contributions of these factors toward shaping the attitudes of university students regarding the utilization of ChatGPT for instructional purposes. This investigation incorporates dimensions such as social influence, self-efficacy, and personal innovativeness to augment the VAM. This augmentation aims to identify components where a hybrid approach, integrating partial least squares (PLS), artificial neural networks (ANN), deep neural networks (DNN), and classification algorithms, is employed to accurately discern both linear and nonlinear correlations. The data for this study were obtained through an online survey administered to university students, and a purposive sample technique was employed to select 369 valid responses. Following the initial data preparation, the assessment process comprised three successive stages: PLS, ANN, DNN and classification algorithms analysis. Intention is influenced by attitude, which is predicted by perceived usefulness, perceived enjoyment, social influence, self-efficacy, and personal innovativeness. Moreover, personal innovativeness has the maximum contribution to attitude followed by self-efficacy, enjoyment, usefulness, social influence, technicality, and cost. These findings will support the creation and prioritization of student-centered educational services. Additionally, this study can contribute to creating an efficient learning management system to enhance students' academic performance and professional efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kam发布了新的文献求助10
刚刚
dqq发布了新的文献求助10
2秒前
2秒前
2秒前
Rubby应助qiang采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
yuanjingnan完成签到,获得积分10
3秒前
MMMMM完成签到,获得积分10
3秒前
5秒前
完美世界应助无私的以云采纳,获得10
6秒前
6秒前
LaTeXer应助洒松雪采纳,获得100
8秒前
眼睛大紊发布了新的文献求助10
8秒前
MMMMM发布了新的文献求助10
9秒前
bifeifei完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Akim应助caohaha采纳,获得10
13秒前
kery发布了新的文献求助20
13秒前
Jasper应助眼睛大紊采纳,获得10
14秒前
14秒前
英勇笑萍完成签到,获得积分10
15秒前
喵药师完成签到,获得积分10
17秒前
zx发布了新的文献求助10
17秒前
18秒前
lalaland发布了新的文献求助10
19秒前
llll发布了新的文献求助10
19秒前
陈陈完成签到,获得积分20
19秒前
19秒前
21秒前
孙燕应助学习采纳,获得10
21秒前
23秒前
YL完成签到,获得积分10
24秒前
毛毛发布了新的文献求助10
25秒前
咬经受搓狐臭空调完成签到,获得积分10
25秒前
Kam完成签到,获得积分20
25秒前
韭菜何子发布了新的文献求助10
25秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821