Adoption of ChatGPT by university students for academic purposes: Partial least square, artificial neural network, deep neural network and classification algorithms approach

人工神经网络 人工智能 计算机科学 算法 平方(代数) 时滞神经网络 机器学习 数学 几何学
作者
Arif Mahmud,Afjal H. Sarower,Amir Sohel,Md Assaduzzaman,Touhid Bhuiyan
出处
期刊:Array [Elsevier]
卷期号:21: 100339-100339 被引量:6
标识
DOI:10.1016/j.array.2024.100339
摘要

Given the limited extent of study conducted on the application of ChatGPT in the realm of education, this domain still needs to be explored. Consequently, the primary objective of this study is to evaluate the impact of factors within the extended value-based adoption model (VAM) and to delineate the individual contributions of these factors toward shaping the attitudes of university students regarding the utilization of ChatGPT for instructional purposes. This investigation incorporates dimensions such as social influence, self-efficacy, and personal innovativeness to augment the VAM. This augmentation aims to identify components where a hybrid approach, integrating partial least squares (PLS), artificial neural networks (ANN), deep neural networks (DNN), and classification algorithms, is employed to accurately discern both linear and nonlinear correlations. The data for this study were obtained through an online survey administered to university students, and a purposive sample technique was employed to select 369 valid responses. Following the initial data preparation, the assessment process comprised three successive stages: PLS, ANN, DNN and classification algorithms analysis. Intention is influenced by attitude, which is predicted by perceived usefulness, perceived enjoyment, social influence, self-efficacy, and personal innovativeness. Moreover, personal innovativeness has the maximum contribution to attitude followed by self-efficacy, enjoyment, usefulness, social influence, technicality, and cost. These findings will support the creation and prioritization of student-centered educational services. Additionally, this study can contribute to creating an efficient learning management system to enhance students' academic performance and professional efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ningxin完成签到,获得积分10
1秒前
鱼丸完成签到,获得积分20
1秒前
代建成完成签到,获得积分10
1秒前
cici妈完成签到 ,获得积分10
2秒前
轻松的鑫应助聪明伊采纳,获得10
2秒前
Autumn完成签到,获得积分10
2秒前
liv完成签到,获得积分10
3秒前
Hello应助Dong采纳,获得10
3秒前
枫茗发布了新的文献求助30
3秒前
爱撒娇的紫菜完成签到,获得积分10
3秒前
Baneyhua完成签到,获得积分10
3秒前
3秒前
林夏完成签到,获得积分10
3秒前
生言生语发布了新的文献求助10
3秒前
烟花应助小芳芳采纳,获得10
4秒前
无极2023完成签到 ,获得积分0
5秒前
5秒前
5秒前
一桥轻雨完成签到,获得积分10
5秒前
阿柠完成签到,获得积分10
6秒前
工科小白发布了新的文献求助10
6秒前
鳗鱼傲柏完成签到,获得积分10
6秒前
6秒前
李旭桐完成签到,获得积分10
6秒前
Eternity2025完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Zozo完成签到,获得积分10
7秒前
hawaii66发布了新的文献求助10
8秒前
8秒前
飞燕草完成签到 ,获得积分10
9秒前
选择性哑巴完成签到,获得积分10
9秒前
ben1702发布了新的文献求助10
9秒前
zanedou完成签到,获得积分10
9秒前
枫泾完成签到,获得积分10
9秒前
9秒前
10秒前
林岚完成签到,获得积分10
10秒前
壮观小懒虫完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439303
求助须知:如何正确求助?哪些是违规求助? 4550351
关于积分的说明 14224204
捐赠科研通 4471300
什么是DOI,文献DOI怎么找? 2450329
邀请新用户注册赠送积分活动 1441193
关于科研通互助平台的介绍 1417863