Adoption of ChatGPT by university students for academic purposes: Partial least square, artificial neural network, deep neural network and classification algorithms approach

人工神经网络 人工智能 计算机科学 算法 平方(代数) 时滞神经网络 机器学习 数学 几何学
作者
Arif Mahmud,Afjal H. Sarower,Amir Sohel,Md Assaduzzaman,Touhid Bhuiyan
出处
期刊:Array [Elsevier BV]
卷期号:21: 100339-100339 被引量:6
标识
DOI:10.1016/j.array.2024.100339
摘要

Given the limited extent of study conducted on the application of ChatGPT in the realm of education, this domain still needs to be explored. Consequently, the primary objective of this study is to evaluate the impact of factors within the extended value-based adoption model (VAM) and to delineate the individual contributions of these factors toward shaping the attitudes of university students regarding the utilization of ChatGPT for instructional purposes. This investigation incorporates dimensions such as social influence, self-efficacy, and personal innovativeness to augment the VAM. This augmentation aims to identify components where a hybrid approach, integrating partial least squares (PLS), artificial neural networks (ANN), deep neural networks (DNN), and classification algorithms, is employed to accurately discern both linear and nonlinear correlations. The data for this study were obtained through an online survey administered to university students, and a purposive sample technique was employed to select 369 valid responses. Following the initial data preparation, the assessment process comprised three successive stages: PLS, ANN, DNN and classification algorithms analysis. Intention is influenced by attitude, which is predicted by perceived usefulness, perceived enjoyment, social influence, self-efficacy, and personal innovativeness. Moreover, personal innovativeness has the maximum contribution to attitude followed by self-efficacy, enjoyment, usefulness, social influence, technicality, and cost. These findings will support the creation and prioritization of student-centered educational services. Additionally, this study can contribute to creating an efficient learning management system to enhance students' academic performance and professional efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助不来也不去采纳,获得10
刚刚
聚砂成塔完成签到,获得积分10
刚刚
大鸟依人完成签到 ,获得积分10
1秒前
勇敢虫子不怕困难完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
Chihiro完成签到 ,获得积分10
1秒前
aa完成签到,获得积分10
2秒前
小刘完成签到,获得积分10
2秒前
科研通AI6应助文建武采纳,获得10
2秒前
orixero应助吴圳采纳,获得10
2秒前
bernie1023完成签到,获得积分10
3秒前
Akim应助我的账号采纳,获得10
3秒前
Lucas应助李君然采纳,获得10
3秒前
优秀问丝发布了新的文献求助30
3秒前
科研通AI6应助winki采纳,获得10
4秒前
Gwen完成签到,获得积分10
5秒前
5秒前
充电宝应助PigaChu采纳,获得10
5秒前
烟花应助mia采纳,获得10
5秒前
李爱国应助桃花长平采纳,获得10
5秒前
狮子沟核聚变骡子完成签到 ,获得积分10
5秒前
梦玲完成签到,获得积分10
6秒前
aa发布了新的文献求助10
6秒前
6秒前
6秒前
ym完成签到,获得积分10
6秒前
明理的蜗牛完成签到,获得积分10
6秒前
sunfield2014完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
ki完成签到,获得积分10
7秒前
7秒前
7秒前
伶俐一曲完成签到,获得积分10
8秒前
8秒前
8秒前
心肝宝贝甜蜜饯完成签到,获得积分10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426