热电联产
吸收式热泵
工艺工程
热泵
废物管理
环境科学
发电
化学
热力学
功率(物理)
工程类
机械工程
热交换器
物理
作者
Yifei Yuan,Nini Wang,Jia Zhen-guo,Yuelei Zhang,Genming Zhao,Hongjun Guan,Li Yang,Suoying He,Liqiang Zhang,Ming Gao
标识
DOI:10.1016/j.enconman.2023.117958
摘要
The Combined Heat and Power (CHP) system represents an energy-efficient and environmentally-friendly approach to energy utilization. However, in the context of the “carbon peaking and carbon neutrality” strategy, ensuring low-carbon operation of CHP systems becomes imperative. In this study, based on absorption heat pump (AHP), an extraction condensing carbon capture (EC&CC) CHP coupled system and a low-pressure cylinder zero-output carbon capture (LCZ&CC) CHP coupled system are proposed, respectively. Furthermore, under the 100 % turbine heat acceptance (THA) operating condition, a variable operating condition study of heating load and carbon capture capacity is conducted. The results demonstrate that under identical heating load, the EC&CC CHP coupled system has superior thermal economy, with an average reduction of 1011.03 kJ/kWh in heat consumption of power generation and 34.54 g/kWh in coal consumption of power generation compared with the LCZ&CC CHP coupled system; For equivalent carbon capture capacity, the LCZ&CC CHP coupled system has superior thermal economy, with an average reduction of 771.28 kJ/kWh in heat consumption and 26.35 g/kWh in coal consumption of power generation compared with the EC&CC CHP coupled system. The EC&CC CHP coupled system has lower CO2 capture heat consumption, resulting in an average reduction of 135.67 t/h in carbon capture extraction compared with the LCZ&CC CHP coupled system. This study can provide guidance for optimizing the design of carbon capture CHP coupled systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI