Enhanced ResNet-151-based fused features for optimized Bi-LSTM-DNN-aided handwritten character and digits recognition

计算机科学 模式识别(心理学) 人工智能 卷积神经网络 特征提取 水准点(测量) 特征(语言学) 性格(数学) 光学字符识别 数据集 边距(机器学习) 集合(抽象数据类型) 特征向量 智能字识别 语音识别 智能字符识别 字符识别 图像(数学) 数学 机器学习 哲学 程序设计语言 地理 语言学 大地测量学 几何学
作者
Srinivasa Rao N,C. Nelson Kennedy Babu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122860-122860 被引量:4
标识
DOI:10.1016/j.eswa.2023.122860
摘要

Optical Character Recognition (OCR) is a method to convert a scanned photo of“handwritten character recognition (HCR) or printed character recognition (PCR)” into a form of digital text. HCR is a version of OCR, which is remarkably modeled to identify handwritten text, while PCR aims at printed text identification. The identification of handwritten characters and digits is more complicated as compared to PCR because of the diversities in human writing styles, stokes, thickness, and curves of characters. Similarly, achievements in several computer vision tasks consider the Convolutional Neural Networks (CNN) to give an end-to-end solution for HCR with huge success. However, the process of significant feature learning for the identification of images is complicated with little data. Hence, this paper aims to develop a new handwritten character and digit recognition model with the incorporation of a deep learning strategy. Initially, the data related to Indian languages are collected from the standard benchmark datasets. Then, the collected data are given into the feature extraction phase 1, where the ResNet 151 is used for extracting the feature set 1. Similarly, the data gathered are considered in the feature extraction phase 2, where the Optimal Ensemble Pattern extraction approach is developed with Local Binary Pattern (LBP), Local Gradient Patterns (LGP), Local Tetra Pattern (LTrP), and Local Vector Pattern (LVP) for extracting the significant patterns from the language data. These extracted patterns are given into the ResNet 151 for getting the feature set 2. Here, the features from ResNet 151 get optimized with the enhanced optimization algorithm with Fitness-based Sail Fish Optimizer (F-SFO). The obtained feature set 1 and optimal feature set 2 are concatenated for performing final recognition. At last, the HCR is done with the help of developed Bi-LSTM-DNN to achieve the enhanced and accurate recognition of handwritten characters of the Indian languages. The performances of character recognition are further improved with the parameter optimization in Bi-LSTM-DNN with the same enhanced F-SFO. Overall result analysis, the accuracy of the designed method attains 95.12%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
向日葵完成签到,获得积分10
3秒前
肉片牛帅帅完成签到,获得积分10
3秒前
是白鸽啊完成签到 ,获得积分10
6秒前
科研通AI5应助静一会采纳,获得10
7秒前
答辩科学家完成签到,获得积分10
7秒前
领导范儿应助Rainbow采纳,获得10
8秒前
科研人员完成签到 ,获得积分10
9秒前
dearyman完成签到,获得积分10
9秒前
10秒前
哭泣的缘郡完成签到 ,获得积分10
11秒前
你倒是发啊完成签到,获得积分10
12秒前
感动归尘完成签到,获得积分10
13秒前
didilucky完成签到,获得积分10
14秒前
kxdxng完成签到 ,获得积分10
14秒前
橙子爱吃火龙果完成签到 ,获得积分10
14秒前
静一会完成签到,获得积分10
15秒前
15秒前
静一会发布了新的文献求助10
21秒前
qwns完成签到 ,获得积分10
21秒前
wp2002完成签到 ,获得积分10
21秒前
23秒前
柠檬完成签到,获得积分10
24秒前
燕子完成签到,获得积分10
26秒前
忐忑的草丛完成签到,获得积分10
29秒前
善良的火完成签到 ,获得积分10
30秒前
marvin发布了新的文献求助10
30秒前
念姬完成签到 ,获得积分10
30秒前
chi完成签到 ,获得积分10
36秒前
淡淡的小蘑菇完成签到 ,获得积分10
36秒前
36秒前
健忘数据线完成签到 ,获得积分10
36秒前
小马甲应助随风采纳,获得10
37秒前
tomf完成签到,获得积分10
37秒前
Wang完成签到 ,获得积分10
39秒前
韭黄发布了新的文献求助10
40秒前
huangdq6完成签到 ,获得积分10
41秒前
changfox完成签到,获得积分10
41秒前
我独舞完成签到 ,获得积分10
42秒前
与离完成签到 ,获得积分10
45秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580488
求助须知:如何正确求助?哪些是违规求助? 3150008
关于积分的说明 9479682
捐赠科研通 2851531
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579