Nanostructured Mn-Doped Ni–Co Hydroxide Microspheres for Fast-Kinetics Supercapacitors

超级电容器 微球 动力学 氢氧化物 兴奋剂 材料科学 化学工程 化学 电极 光电子学 电容 物理化学 物理 量子力学 工程类
作者
Junjun Hu,Wei Xing Zheng,Zhenying Sun,Shengshang Lu,Tong Guo,Wensheng Yang,Quan Xie,Yunjun Ruan
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (3): 3269-3278 被引量:4
标识
DOI:10.1021/acsanm.3c05647
摘要

Transition-metal double hydroxides offer many benefits, including abundant nanostructures, low cost, easy preparation, diverse compositions, and adjustable physicochemical properties, which have a wide range of applications and are highly promising for the development of high-performance electrode materials. Herein, hydrangea-like manganese-doped nickel–cobalt double hydroxide (NiCoDH-Mn) nanostructures were prepared through a fast one-step microwave hydrothermal method within a few minutes. A thorough analysis was conducted on how the nanostructure, crystal structure, and electrochemical properties of the samples were affected by the amount of the Mn doping content. Density functional theory (DFT) calculations demonstrated that the introduction of Mn doping can generate impurity levels around the Fermi level of NiCoDH, enhancing its electrical conductivity. At a current density of 1 A g–1, the optimized NiCoDH-Mn has a remarkable specific capacity of 107.4 mA h g–1. Even when the current density increases by 15 times, it can still maintain a high specific capacity of 66.3 mA h g–1. After undergoing 1500 cycles with a current density of 5 A g–1, the electrode's capacity remains 128%. The hybrid supercapacitor consisting of the NiCoDH-Mn cathode and mango seed-derived activated carbon anode has an impressive energy density of 47.9 W h kg–1 and a power density of 850 W kg–1. Moreover, it boasts an impressive capacitance retention rate of 87.5%, even after 5000 cycles. We offer a highly effective and speedy approach to creating high-performance transition-metal hydroxides that are ideal for energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan关闭了fan文献求助
刚刚
畅快不平发布了新的文献求助10
刚刚
许文强发布了新的文献求助10
1秒前
星辰大海应助火火采纳,获得10
2秒前
平常的g完成签到,获得积分10
3秒前
端庄冬日完成签到,获得积分10
3秒前
3秒前
爆米花应助hfl采纳,获得30
3秒前
斯文败类应助sdsd采纳,获得10
4秒前
上好佳完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
bxj完成签到,获得积分10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
XL完成签到,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
夏来应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
xiaoming应助科研通管家采纳,获得20
6秒前
wwz应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
我是老大应助宁采臣采纳,获得10
7秒前
Hello应助聂学雨采纳,获得10
8秒前
领导范儿应助卡卡龍特采纳,获得30
8秒前
陈乐宁2024发布了新的文献求助30
8秒前
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847