Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging

胰腺导管腺癌 阶段(地层学) 胰腺癌 人工智能 计算机科学 腺癌 放射科 胰腺癌 医学 内科学 癌症 生物 古生物学
作者
Qi Miao,Xuechun Wang,Jingjing Cui,Haoxin Zheng,Yan Xie,Kexin Zhu,Ruimei Chai,Yuanxi Jiang,Dongli Feng,Xin Zhang,Feng Shi,Xiaodong Tan,Guoguang Fan,Keke Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108125-108125 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108125
摘要

The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55–67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753–0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Annie发布了新的文献求助30
刚刚
12发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
wanci应助makabakkkk采纳,获得10
2秒前
楚明允完成签到 ,获得积分10
3秒前
机灵冷风发布了新的文献求助10
3秒前
4秒前
4秒前
QYQ发布了新的文献求助10
4秒前
5秒前
kkk发布了新的文献求助10
6秒前
6秒前
zzzzz完成签到,获得积分10
7秒前
维奈克拉应助无心的水桃采纳,获得10
7秒前
王泰一发布了新的文献求助10
7秒前
455发布了新的文献求助10
7秒前
体贴香岚完成签到 ,获得积分10
8秒前
傅宛白发布了新的文献求助10
9秒前
dxszing发布了新的文献求助10
9秒前
9秒前
赛特新思发布了新的文献求助10
9秒前
11秒前
喜羊羊完成签到 ,获得积分10
11秒前
Jarvis完成签到,获得积分10
11秒前
希望天下0贩的0应助Sea_U采纳,获得10
12秒前
13秒前
SciGPT应助455采纳,获得10
13秒前
15秒前
赘婿应助RC_Wang采纳,获得10
15秒前
小乔同学发布了新的文献求助10
16秒前
makabakkkk发布了新的文献求助10
17秒前
孤独完成签到,获得积分10
17秒前
18秒前
18秒前
语秋完成签到,获得积分10
19秒前
猪米妮发布了新的文献求助10
19秒前
CipherSage应助Young_Lee采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987