清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging

胰腺导管腺癌 阶段(地层学) 胰腺癌 人工智能 计算机科学 腺癌 放射科 胰腺癌 医学 内科学 癌症 生物 古生物学
作者
Qi Miao,Xuechun Wang,Jingjing Cui,Haoxin Zheng,Yan Xie,Kexin Zhu,Ruimei Chai,Yuanxi Jiang,Dongli Feng,Xin Zhang,Feng Shi,Xiaodong Tan,Guoguang Fan,Keke Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108125-108125 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108125
摘要

The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55–67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753–0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗碗豆喵完成签到 ,获得积分10
13秒前
氟锑酸完成签到 ,获得积分10
17秒前
paradox完成签到 ,获得积分10
19秒前
Harlotte完成签到 ,获得积分0
36秒前
stiger完成签到,获得积分10
39秒前
AliEmbark发布了新的文献求助10
42秒前
万金油完成签到 ,获得积分10
48秒前
Aha完成签到 ,获得积分10
1分钟前
山是山三十三完成签到 ,获得积分10
1分钟前
然来溪完成签到 ,获得积分10
1分钟前
safari完成签到 ,获得积分10
1分钟前
杭紫雪完成签到,获得积分10
1分钟前
bajiu完成签到 ,获得积分10
1分钟前
Thi发布了新的文献求助10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
llll完成签到 ,获得积分0
1分钟前
三杯吐然诺完成签到 ,获得积分10
1分钟前
科研通AI2S应助小鱼女侠采纳,获得10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
可耐的万言完成签到 ,获得积分10
1分钟前
sidashu发布了新的文献求助10
1分钟前
小鱼女侠发布了新的文献求助10
1分钟前
善学以致用应助摆渡人采纳,获得10
1分钟前
Edward发布了新的文献求助10
1分钟前
Hello应助胡泳旭采纳,获得10
1分钟前
妮妮完成签到 ,获得积分10
1分钟前
fuws完成签到 ,获得积分10
1分钟前
研友_LmVygn完成签到 ,获得积分10
1分钟前
1分钟前
Aiden完成签到 ,获得积分10
2分钟前
安静的ky完成签到,获得积分10
2分钟前
无花果应助sidashu采纳,获得10
2分钟前
结实凌瑶完成签到 ,获得积分10
2分钟前
2分钟前
gujianhua发布了新的文献求助10
2分钟前
摆渡人发布了新的文献求助10
2分钟前
沐浠完成签到 ,获得积分10
2分钟前
zm完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551