Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging

胰腺导管腺癌 阶段(地层学) 胰腺癌 人工智能 计算机科学 腺癌 放射科 胰腺癌 医学 内科学 癌症 生物 古生物学
作者
Qi Miao,Xuechun Wang,Jingjing Cui,Haoxin Zheng,Yan Xie,Kexin Zhu,Ruimei Chai,Yuanxi Jiang,Dongli Feng,Xin Zhang,Feng Shi,Xiaodong Tan,Guoguang Fan,Keke Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108125-108125 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108125
摘要

The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55–67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753–0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的半山完成签到,获得积分10
刚刚
JRG完成签到,获得积分20
刚刚
瞬间完成签到,获得积分10
1秒前
1秒前
3秒前
决明子完成签到 ,获得积分10
3秒前
希望天下0贩的0应助柚子采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
9℃完成签到 ,获得积分10
8秒前
单纯黑米完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助30
9秒前
勤恳洙发布了新的文献求助10
10秒前
祝笑柳完成签到,获得积分10
11秒前
秋qiu完成签到,获得积分10
11秒前
NINI完成签到 ,获得积分10
12秒前
liuzengzhang666完成签到,获得积分10
14秒前
15秒前
小巧的牛排完成签到 ,获得积分10
15秒前
所所应助柚子采纳,获得10
16秒前
16秒前
刘濮源发布了新的文献求助10
16秒前
16秒前
充电宝应助123采纳,获得10
16秒前
lljiaa应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
ylt应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
Maricey应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
所所应助科研通管家采纳,获得10
19秒前
lljiaa应助科研通管家采纳,获得10
19秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
ylt应助科研通管家采纳,获得10
19秒前
19秒前
Lny应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978