Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging

胰腺导管腺癌 阶段(地层学) 胰腺癌 人工智能 计算机科学 腺癌 放射科 胰腺癌 医学 内科学 癌症 生物 古生物学
作者
Qi Miao,Xuechun Wang,Jingjing Cui,Haoxin Zheng,Yan Xie,Kexin Zhu,Ruimei Chai,Yuanxi Jiang,Dongli Feng,Xin Zhang,Feng Shi,Xiaodong Tan,Guoguang Fan,Keke Liang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108125-108125 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108125
摘要

The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55–67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753–0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过于喧嚣的孤独完成签到,获得积分10
刚刚
shin0324完成签到,获得积分10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
摆烂完成签到 ,获得积分10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
晶格畸变完成签到,获得积分10
2秒前
mufcyang完成签到,获得积分10
2秒前
大林完成签到,获得积分10
2秒前
Muhi完成签到,获得积分10
2秒前
汉堡包应助YF采纳,获得10
3秒前
Survive完成签到,获得积分10
3秒前
情怀应助yy采纳,获得10
3秒前
贵贵完成签到,获得积分10
4秒前
CipherSage应助蔡6705采纳,获得10
4秒前
lhcshuang发布了新的文献求助10
5秒前
陈富贵完成签到 ,获得积分10
6秒前
TanXu完成签到 ,获得积分10
6秒前
南冥完成签到 ,获得积分10
7秒前
无私的芹应助狂野忆文采纳,获得10
7秒前
所所应助狂野忆文采纳,获得10
7秒前
研友_VZG7GZ应助狂野忆文采纳,获得10
7秒前
斯文败类应助狂野忆文采纳,获得10
7秒前
无花果应助狂野忆文采纳,获得10
7秒前
上官若男应助狂野忆文采纳,获得10
7秒前
赘婿应助狂野忆文采纳,获得10
7秒前
顾矜应助狂野忆文采纳,获得10
7秒前
情怀应助狂野忆文采纳,获得10
7秒前
8秒前
8秒前
光亮若翠完成签到,获得积分10
9秒前
Atopos完成签到,获得积分10
10秒前
CAOHOU应助小鱼女侠采纳,获得10
10秒前
平常星星完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
无花果应助流川枫采纳,获得10
12秒前
12秒前
巧克力手印完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027