An Integrated Model Based Prediction of Machining Accuracy for Milling Machine

机械加工 机床 控制理论(社会学) 状态空间表示 数控 计算机科学 联轴节(管道) 可靠性(半导体) 机械工程 工程类 控制工程 算法 控制(管理) 人工智能 功率(物理) 物理 量子力学
作者
Liang Huang,Hua Huang,Qingwen Wang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (13): 6499-6517
标识
DOI:10.1177/09544062231223898
摘要

The accuracy of machining can be predicted during the design process of CNC machine tools, while the prediction accuracy depends on the prediction model. However, when establishing the prediction model, the coupling effect among the machine tool’s different components is always ignored for modeling efficiency, so this will lead to its reliability cannot be guaranteed. To address this problem, the model reduction theory and the lumped parameter method are used in this study to set the state-space equations of the essential structural parts. Moreover, the electro-mechanical coupling parameter equation of the servo system is transformed into a state-space equation. Then the state-space equations of the components and the servo system are coupled to establish the machine tool dynamic model. Furthermore, a theoretical model of instantaneous undeformed chip thickness is found, and according to the linear relationship between the micro-cutting force and the instantaneous undeformed chip thickness, the instantaneous cutting force model of the cylindrical milling cutter is established. Based on these, the integrated model, which considers the mechanical structure, control system and cutting force, is obtained and further used in Simulink to build the machining accuracy prediction platform, as well as the accuracy of the integrated prediction model is verified. Moreover, the prediction model established by the integrated modeling method can effectively simulate the actual machining conditions of the machine tool, and the superiority of prediction is confirmed by comparing the simulated and measured results in peripheral milling applications. The results show the error in the system response efficiency is 14.8%, while the error in position accuracy and delay characteristics is less than 10%, the error between the predicted size of the prediction model and the actual size is within 28 μm, a minimum prediction error is 7 μm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
gaoww发布了新的文献求助10
1秒前
小二发布了新的文献求助10
5秒前
solobang发布了新的文献求助10
6秒前
CodeCraft应助Jocelyn7采纳,获得10
6秒前
秋之月完成签到,获得积分10
6秒前
7秒前
cheche关注了科研通微信公众号
7秒前
8秒前
科研小民工应助kento采纳,获得50
9秒前
完美世界应助小萌采纳,获得10
10秒前
10秒前
gaoww完成签到,获得积分10
10秒前
11秒前
WZ0904发布了新的文献求助10
11秒前
11秒前
lab完成签到 ,获得积分0
11秒前
小蘑菇应助今今采纳,获得10
12秒前
CodeCraft应助秋之月采纳,获得10
12秒前
I1waml完成签到 ,获得积分10
12秒前
12秒前
guygun完成签到,获得积分10
12秒前
zho发布了新的文献求助10
13秒前
独特亦旋发布了新的文献求助10
13秒前
14秒前
研友_LOqqmZ完成签到,获得积分10
15秒前
15秒前
英俊的铭应助文献查找采纳,获得10
15秒前
solobang发布了新的文献求助10
15秒前
Jasper应助老迟到的书雁采纳,获得10
18秒前
orixero应助小二采纳,获得10
18秒前
19秒前
19秒前
simple完成签到,获得积分10
19秒前
caoyy发布了新的文献求助10
19秒前
赵小可可可可完成签到,获得积分10
21秒前
小萌发布了新的文献求助10
22秒前
weiv发布了新的文献求助10
22秒前
海科科发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824