An Integrated Model Based Prediction of Machining Accuracy for Milling Machine

机械加工 机床 控制理论(社会学) 状态空间表示 数控 计算机科学 联轴节(管道) 可靠性(半导体) 机械工程 工程类 控制工程 算法 控制(管理) 人工智能 功率(物理) 物理 量子力学
作者
Liang Huang,Hua Huang,Qingwen Wang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (13): 6499-6517
标识
DOI:10.1177/09544062231223898
摘要

The accuracy of machining can be predicted during the design process of CNC machine tools, while the prediction accuracy depends on the prediction model. However, when establishing the prediction model, the coupling effect among the machine tool’s different components is always ignored for modeling efficiency, so this will lead to its reliability cannot be guaranteed. To address this problem, the model reduction theory and the lumped parameter method are used in this study to set the state-space equations of the essential structural parts. Moreover, the electro-mechanical coupling parameter equation of the servo system is transformed into a state-space equation. Then the state-space equations of the components and the servo system are coupled to establish the machine tool dynamic model. Furthermore, a theoretical model of instantaneous undeformed chip thickness is found, and according to the linear relationship between the micro-cutting force and the instantaneous undeformed chip thickness, the instantaneous cutting force model of the cylindrical milling cutter is established. Based on these, the integrated model, which considers the mechanical structure, control system and cutting force, is obtained and further used in Simulink to build the machining accuracy prediction platform, as well as the accuracy of the integrated prediction model is verified. Moreover, the prediction model established by the integrated modeling method can effectively simulate the actual machining conditions of the machine tool, and the superiority of prediction is confirmed by comparing the simulated and measured results in peripheral milling applications. The results show the error in the system response efficiency is 14.8%, while the error in position accuracy and delay characteristics is less than 10%, the error between the predicted size of the prediction model and the actual size is within 28 μm, a minimum prediction error is 7 μm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Boston完成签到,获得积分10
1秒前
2秒前
ayaka发布了新的文献求助10
2秒前
星期天不上发条完成签到 ,获得积分10
3秒前
WuCola完成签到 ,获得积分10
3秒前
wangzx完成签到,获得积分10
4秒前
4秒前
AishuangQi完成签到,获得积分10
4秒前
4秒前
雨田完成签到,获得积分10
4秒前
茉莉完成签到 ,获得积分10
6秒前
AAAA发布了新的文献求助10
8秒前
8秒前
9秒前
yueyeu567发布了新的文献求助10
10秒前
WangQ完成签到,获得积分10
10秒前
充电宝应助雨田采纳,获得10
10秒前
Eva完成签到,获得积分10
11秒前
12秒前
lxr发布了新的文献求助10
12秒前
江江云完成签到,获得积分20
13秒前
16秒前
16秒前
17秒前
17秒前
小高发布了新的文献求助10
17秒前
bkagyin应助AAAA采纳,获得10
18秒前
棖0921发布了新的文献求助30
18秒前
20秒前
rainbow发布了新的文献求助20
21秒前
球球爱科研完成签到,获得积分10
21秒前
21秒前
司妧完成签到,获得积分10
22秒前
23秒前
24秒前
单纯的勒发布了新的文献求助10
24秒前
wwjwwj发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
yoyo完成签到 ,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867