亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SWISTA-Nets: Subband-adaptive wavelet iterative shrinkage thresholding networks for image reconstruction

可解释性 人工智能 计算机科学 稳健性(进化) 迭代重建 小波 阈值 机器学习 反问题 模式识别(心理学) 图像(数学) 数学 数学分析 生物化学 化学 基因
作者
Binchun Lu,Lidan Fu,Yixuan Pan,Yonggui Dong
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:113: 102345-102345
标识
DOI:10.1016/j.compmedimag.2024.102345
摘要

Robust and interpretable image reconstruction is central to imageology applications in clinical practice. Prevalent deep networks, with strong learning ability to extract implicit information from data manifold, are still lack of prior knowledge introduced from mathematics or physics, leading to instability, poor structure interpretability and high computation cost. As to this issue, we propose two prior knowledge-driven networks to combine the good interpretability of mathematical methods and the powerful learnability of deep learning methods. Incorporating different kinds of prior knowledge, we propose subband-adaptive wavelet iterative shrinkage thresholding networks (SWISTA-Nets), where almost every network module is in one-to-one correspondence with each step involved in the iterative algorithm. By end-to-end training of proposed SWISTA-Nets, implicit information can be extracted from training data and guide the tuning process of key parameters that possess mathematical definition. The inverse problems associated with two medical imaging modalities, i.e., electromagnetic tomography and X-ray computational tomography are applied to validate the proposed networks. Both visual and quantitative results indicate that the SWISTA-Nets outperform mathematical methods and state-of-the-art prior knowledge-driven networks, especially with fewer training parameters, interpretable network structures and well robustness. We assume that our analysis will support further investigation of prior knowledge-driven networks in the field of ill-posed image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fighting完成签到,获得积分10
2秒前
Jasper应助yg采纳,获得10
5秒前
10秒前
量子星尘发布了新的文献求助10
14秒前
24秒前
月亮完成签到,获得积分10
24秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得20
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
34秒前
在水一方应助7_2U1采纳,获得10
39秒前
菠萝炒饭不要辣椒完成签到,获得积分10
43秒前
桐桐应助无情的琳采纳,获得10
1分钟前
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
2分钟前
2分钟前
CAOHOU应助路漫漫其修远兮采纳,获得10
2分钟前
松林揽月发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Jasper应助路漫漫其修远兮采纳,获得10
2分钟前
万能图书馆应助愿景采纳,获得10
2分钟前
桐桐应助Wei采纳,获得10
2分钟前
2分钟前
7_2U1发布了新的文献求助10
2分钟前
2分钟前
7_2U1完成签到,获得积分20
3分钟前
3分钟前
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401