亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SWISTA-Nets: Subband-adaptive wavelet iterative shrinkage thresholding networks for image reconstruction

可解释性 人工智能 计算机科学 稳健性(进化) 迭代重建 小波 阈值 机器学习 反问题 模式识别(心理学) 图像(数学) 数学 数学分析 生物化学 化学 基因
作者
Binchun Lu,Lidan Fu,Yixuan Pan,Yonggui Dong
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:113: 102345-102345
标识
DOI:10.1016/j.compmedimag.2024.102345
摘要

Robust and interpretable image reconstruction is central to imageology applications in clinical practice. Prevalent deep networks, with strong learning ability to extract implicit information from data manifold, are still lack of prior knowledge introduced from mathematics or physics, leading to instability, poor structure interpretability and high computation cost. As to this issue, we propose two prior knowledge-driven networks to combine the good interpretability of mathematical methods and the powerful learnability of deep learning methods. Incorporating different kinds of prior knowledge, we propose subband-adaptive wavelet iterative shrinkage thresholding networks (SWISTA-Nets), where almost every network module is in one-to-one correspondence with each step involved in the iterative algorithm. By end-to-end training of proposed SWISTA-Nets, implicit information can be extracted from training data and guide the tuning process of key parameters that possess mathematical definition. The inverse problems associated with two medical imaging modalities, i.e., electromagnetic tomography and X-ray computational tomography are applied to validate the proposed networks. Both visual and quantitative results indicate that the SWISTA-Nets outperform mathematical methods and state-of-the-art prior knowledge-driven networks, especially with fewer training parameters, interpretable network structures and well robustness. We assume that our analysis will support further investigation of prior knowledge-driven networks in the field of ill-posed image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
J_Xu完成签到 ,获得积分10
7秒前
所所应助凛玖niro采纳,获得10
38秒前
50秒前
凛玖niro发布了新的文献求助10
56秒前
霖槿完成签到,获得积分10
57秒前
1分钟前
十八完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
liuliu发布了新的文献求助30
2分钟前
2分钟前
烟花应助Li采纳,获得10
2分钟前
liuliu完成签到,获得积分20
2分钟前
2分钟前
3分钟前
ataybabdallah完成签到,获得积分10
3分钟前
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
上官若男应助Marshall采纳,获得10
3分钟前
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
kdjm688完成签到,获得积分10
4分钟前
彭于晏应助蓝色牛马采纳,获得10
4分钟前
4分钟前
蓝色牛马发布了新的文献求助10
4分钟前
4分钟前
4分钟前
9527完成签到,获得积分10
4分钟前
Li发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587