SWISTA-Nets: Subband-adaptive wavelet iterative shrinkage thresholding networks for image reconstruction

可解释性 人工智能 计算机科学 稳健性(进化) 迭代重建 小波 阈值 机器学习 反问题 模式识别(心理学) 图像(数学) 数学 数学分析 生物化学 化学 基因
作者
Binchun Lu,Lidan Fu,Yixuan Pan,Yonggui Dong
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:113: 102345-102345
标识
DOI:10.1016/j.compmedimag.2024.102345
摘要

Robust and interpretable image reconstruction is central to imageology applications in clinical practice. Prevalent deep networks, with strong learning ability to extract implicit information from data manifold, are still lack of prior knowledge introduced from mathematics or physics, leading to instability, poor structure interpretability and high computation cost. As to this issue, we propose two prior knowledge-driven networks to combine the good interpretability of mathematical methods and the powerful learnability of deep learning methods. Incorporating different kinds of prior knowledge, we propose subband-adaptive wavelet iterative shrinkage thresholding networks (SWISTA-Nets), where almost every network module is in one-to-one correspondence with each step involved in the iterative algorithm. By end-to-end training of proposed SWISTA-Nets, implicit information can be extracted from training data and guide the tuning process of key parameters that possess mathematical definition. The inverse problems associated with two medical imaging modalities, i.e., electromagnetic tomography and X-ray computational tomography are applied to validate the proposed networks. Both visual and quantitative results indicate that the SWISTA-Nets outperform mathematical methods and state-of-the-art prior knowledge-driven networks, especially with fewer training parameters, interpretable network structures and well robustness. We assume that our analysis will support further investigation of prior knowledge-driven networks in the field of ill-posed image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
alala发布了新的文献求助10
1秒前
李明发布了新的文献求助10
1秒前
2秒前
2秒前
余点发布了新的文献求助10
3秒前
Lv关闭了Lv文献求助
3秒前
3秒前
3秒前
3秒前
黄少年完成签到,获得积分20
3秒前
来碗面发布了新的文献求助10
4秒前
童豆发布了新的文献求助10
4秒前
crise发布了新的文献求助30
4秒前
5秒前
5秒前
南木发布了新的文献求助10
5秒前
whatever应助DAYDAY采纳,获得20
5秒前
暖风发布了新的文献求助10
5秒前
yyyyyggggg发布了新的文献求助10
6秒前
Nelson_Foo发布了新的文献求助10
6秒前
管海彪完成签到,获得积分10
6秒前
7秒前
alala完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
爆米花应助电脑桌采纳,获得10
8秒前
杨书朋发布了新的文献求助10
9秒前
潇洒莞完成签到,获得积分10
9秒前
WJ发布了新的文献求助10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得30
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
xzy998应助科研通管家采纳,获得10
11秒前
小马甲应助vspill采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180