已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SWISTA-Nets: Subband-adaptive wavelet iterative shrinkage thresholding networks for image reconstruction

可解释性 人工智能 计算机科学 稳健性(进化) 迭代重建 小波 阈值 机器学习 反问题 模式识别(心理学) 图像(数学) 数学 数学分析 生物化学 化学 基因
作者
Binchun Lu,Lidan Fu,Yixuan Pan,Yonggui Dong
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:113: 102345-102345
标识
DOI:10.1016/j.compmedimag.2024.102345
摘要

Robust and interpretable image reconstruction is central to imageology applications in clinical practice. Prevalent deep networks, with strong learning ability to extract implicit information from data manifold, are still lack of prior knowledge introduced from mathematics or physics, leading to instability, poor structure interpretability and high computation cost. As to this issue, we propose two prior knowledge-driven networks to combine the good interpretability of mathematical methods and the powerful learnability of deep learning methods. Incorporating different kinds of prior knowledge, we propose subband-adaptive wavelet iterative shrinkage thresholding networks (SWISTA-Nets), where almost every network module is in one-to-one correspondence with each step involved in the iterative algorithm. By end-to-end training of proposed SWISTA-Nets, implicit information can be extracted from training data and guide the tuning process of key parameters that possess mathematical definition. The inverse problems associated with two medical imaging modalities, i.e., electromagnetic tomography and X-ray computational tomography are applied to validate the proposed networks. Both visual and quantitative results indicate that the SWISTA-Nets outperform mathematical methods and state-of-the-art prior knowledge-driven networks, especially with fewer training parameters, interpretable network structures and well robustness. We assume that our analysis will support further investigation of prior knowledge-driven networks in the field of ill-posed image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuziiii发布了新的文献求助100
刚刚
classic发布了新的文献求助10
刚刚
窦逗豆发布了新的文献求助10
1秒前
1秒前
2秒前
liyuheng发布了新的文献求助10
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
无名应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
无名应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879