锌
阳极
电偶阳极
柠檬酸
水溶液
无机化学
电解质
电化学
金属
化学
电池(电)
材料科学
剥离(纤维)
箔法
化学工程
电极
冶金
阴极保护
复合材料
有机化学
功率(物理)
物理化学
工程类
物理
量子力学
作者
Bin-bin Sui,Lin Sha,Pengfei Wang,Zhe Gong,Yuhang Zhang,Yuhan Wu,Lina Zhao,Junjie Tang,Fa‐Nian Shi
标识
DOI:10.1016/j.est.2024.110550
摘要
The application of aqueous zinc-ion batteries (AZIBs) is impeded by interface side reactions and dendrite formation. The hard problems were addressed by selecting a safe and cost-effective high concentration of citric acid for the treatment of Zn foil, leading to formation of zinc citrate (ZC) on the Zn surface. For one thing, the ZC layer avoids direct contact between the metal anode and electrolyte, and inhibits the side reaction at the interface. And the presence of a lower proportion of active (002) crystal face on the c-Zn surface also serves to mitigate side reactions induced by water. The c-Zn anode has low corrosion current density (4.5 mA cm−2). For another, the ZC layer regulate the electric field on the surface of c-Zn, thereby promote the uniform plating/stripping of zinc. Conclusively, the cyclic life of c-Zn//c-Zn battery is 650 h at 0.8 mA cm−2. The c-Zn//Na-doped V2O5 full battery has a specific capacity of 235.5 mAh g−1 after 200 cycles at 1 A g−1, and a capacity retention rate of 90.2 %. The present work introduces a novel and efficient approach for the surface optimization of zinc metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI