Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue完成签到,获得积分10
1秒前
淼队完成签到,获得积分10
2秒前
2秒前
落叶解三秋完成签到,获得积分10
3秒前
Crystal完成签到 ,获得积分10
6秒前
小小酥完成签到,获得积分10
6秒前
等待蚂蚁完成签到 ,获得积分10
7秒前
zgt01发布了新的文献求助10
7秒前
心心完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
9秒前
温超完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
Menta1y完成签到,获得积分10
11秒前
czzlancer完成签到,获得积分10
12秒前
汶溢完成签到,获得积分10
12秒前
xsss完成签到,获得积分10
13秒前
TAN完成签到,获得积分10
13秒前
通通通发布了新的文献求助10
14秒前
liudw完成签到,获得积分10
14秒前
丹丹子完成签到 ,获得积分10
15秒前
时光完成签到,获得积分10
15秒前
16秒前
充电宝应助vsvsgo采纳,获得10
18秒前
123完成签到 ,获得积分10
20秒前
Ammr完成签到 ,获得积分10
20秒前
无限的依波完成签到,获得积分10
20秒前
姽婳wy发布了新的文献求助10
21秒前
lemon完成签到,获得积分10
21秒前
传奇3应助duckspy采纳,获得30
22秒前
陈木木完成签到,获得积分10
23秒前
可可西里完成签到,获得积分10
24秒前
奋斗蜗牛完成签到,获得积分10
24秒前
CipherSage应助眼睛大的擎苍采纳,获得10
24秒前
打打应助小小酥采纳,获得10
25秒前
fox完成签到 ,获得积分10
25秒前
僦是卜够完成签到 ,获得积分10
26秒前
小马甲应助嘉梦采纳,获得10
29秒前
qiqi完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022