已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助雾眠气泡水采纳,获得10
1秒前
端庄的香薇完成签到,获得积分10
1秒前
NCS完成签到,获得积分10
4秒前
古月完成签到,获得积分10
4秒前
舒伯特完成签到 ,获得积分10
5秒前
JPH1990驳回了wanci应助
6秒前
11秒前
小马甲应助flysky120采纳,获得10
13秒前
天真的不凡完成签到 ,获得积分10
14秒前
无辜澜发布了新的文献求助10
14秒前
完美世界应助左左采纳,获得10
14秒前
15秒前
汉堡包应助...采纳,获得10
15秒前
三哥完成签到,获得积分20
17秒前
18秒前
登山观海发布了新的文献求助10
19秒前
领导范儿应助一路向南采纳,获得10
19秒前
霉小欧完成签到,获得积分10
21秒前
22秒前
深情安青应助三哥采纳,获得10
23秒前
年糕发布了新的文献求助10
23秒前
Jasper应助纯真的雨采纳,获得10
23秒前
甜甜灵槐完成签到 ,获得积分10
25秒前
wzzznh完成签到 ,获得积分10
25秒前
27秒前
JohnsonTse完成签到,获得积分10
28秒前
29秒前
丘比特应助大侦探皮卡丘采纳,获得10
30秒前
一路向南发布了新的文献求助10
32秒前
32秒前
周文妍发布了新的文献求助10
33秒前
34秒前
34秒前
36秒前
37秒前
Nikii发布了新的文献求助10
39秒前
李健应助小杰杰采纳,获得10
40秒前
丘比特应助小赵同学采纳,获得10
40秒前
无辜澜发布了新的文献求助10
41秒前
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733246
求助须知:如何正确求助?哪些是违规求助? 3277407
关于积分的说明 10002404
捐赠科研通 2993270
什么是DOI,文献DOI怎么找? 1642581
邀请新用户注册赠送积分活动 780542
科研通“疑难数据库(出版商)”最低求助积分说明 748892