已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风荏发布了新的文献求助30
刚刚
1秒前
2秒前
2秒前
5秒前
banban完成签到,获得积分10
5秒前
5秒前
王撑撑完成签到 ,获得积分10
6秒前
YYYY发布了新的文献求助10
6秒前
略略略爱发布了新的文献求助10
6秒前
7秒前
banban发布了新的文献求助10
7秒前
山塘街宁静的果干完成签到,获得积分20
10秒前
立方米完成签到 ,获得积分10
10秒前
10秒前
科研通AI2S应助只谈风月采纳,获得10
11秒前
zz发布了新的文献求助10
12秒前
14秒前
15秒前
桐桐应助Enso采纳,获得10
15秒前
17秒前
吼吼吼吼发布了新的文献求助50
18秒前
爆米花应助冰美式采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
guo发布了新的文献求助10
23秒前
魔幻小蘑菇应助结实的荷采纳,获得10
24秒前
24秒前
Jessie发布了新的文献求助10
25秒前
26秒前
麦兜2001发布了新的文献求助10
28秒前
Singularity应助隐形的雁采纳,获得20
29秒前
29秒前
vincent完成签到 ,获得积分10
30秒前
闪闪苡发布了新的文献求助30
30秒前
阿修罗发布了新的文献求助10
30秒前
30秒前
河南老友发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380