清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苳苳完成签到 ,获得积分10
25秒前
28秒前
清脆钧发布了新的文献求助10
33秒前
小巧弘文完成签到 ,获得积分10
41秒前
青山完成签到,获得积分10
54秒前
清脆钧发布了新的文献求助10
57秒前
allrubbish完成签到,获得积分10
1分钟前
墨言无殇完成签到 ,获得积分10
1分钟前
传奇3应助清脆钧采纳,获得10
1分钟前
1分钟前
丘比特应助海藏进星辰采纳,获得10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
wbh发布了新的文献求助10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
1分钟前
Square完成签到,获得积分10
1分钟前
1分钟前
1分钟前
树懒完成签到 ,获得积分10
1分钟前
1分钟前
鲑鱼完成签到 ,获得积分10
1分钟前
习月阳完成签到,获得积分10
2分钟前
乒坛巨人完成签到 ,获得积分0
2分钟前
米奇妙妙屋完成签到,获得积分10
2分钟前
liaomr完成签到 ,获得积分10
2分钟前
2分钟前
celia完成签到 ,获得积分10
2分钟前
清脆钧发布了新的文献求助10
2分钟前
2分钟前
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
livra1058完成签到,获得积分10
3分钟前
Hxq完成签到 ,获得积分10
3分钟前
阿曾完成签到 ,获得积分10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
dashi完成签到 ,获得积分10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
LaTeXer应助feng采纳,获得200
3分钟前
胡国伦完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990603
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234