亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aggravation of global maize yield loss risk under various hot and dry scenarios using multiple types of prediction approaches

产量(工程) 环境科学 气候变化 气候学 全球变暖 作物产量 气候模式 回归 农学 统计 数学 生态学 生物 材料科学 冶金 地质学
作者
Xiaomeng Yin,Guoyong Leng,Shengzhi Huang,Jian Peng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:44 (4): 1058-1073 被引量:1
标识
DOI:10.1002/joc.8371
摘要

Abstract High temperature and drought are widely known to cause a reduction of crop yield, but the simultaneously occurring risks in major producing countries and the associated uncertainty across various climate change scenarios remain unclear at the global scale. Here, we evaluate global maize yield loss risk (i.e., the probability of yield reduction by over 10% relative to historical trend yield during 1981–2010) across 30 hot and dry scenarios using regression, machine learning and process‐based models. Besides examining yield loss risk in a single country, we predict the potential risks simultaneously occurring in the top two and top ten producing countries. The three approaches agree on the aggravation of yield loss risk under dry and hot scenarios, but show large discrepancy in the magnitude and sensitivities. Specifically, 2°C warming alone could lead to a global yield loss risk of 73%, 100% and 62% based on regression, long‐short term memory (LSTM) and process‐based models, respectively, and warming‐induced risks can be further aggravated by droughts especially in process models. Global yield loss by over 10% would even become the new norm (i.e., yield loss probability is 100%) when temperature increases by over 2°C in some models. Importantly, the probabilities of yield loss simultaneously occurring in the top two countries (i.e., United States and China) and top ten countries are unexpectedly high and could even become 100% under extreme hot and dry scenarios. Our results highlight the large risks that future climate change may bring to multiple exporting and importing countries simultaneously, thus threating global food market and security. We also emphasize the important value of using different types of prediction approaches for yield projection under hot and dry scenarios, which enables more realistic estimation of uncertainty range than a single type of model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助叙温雨采纳,获得10
1秒前
liu砖家完成签到,获得积分20
18秒前
Cindy完成签到,获得积分20
18秒前
完美世界应助xlj采纳,获得10
21秒前
Cindy发布了新的文献求助20
22秒前
30秒前
30秒前
跳跃发布了新的文献求助10
34秒前
xlj发布了新的文献求助10
35秒前
36秒前
叙温雨发布了新的文献求助10
42秒前
杜鑫鹏完成签到,获得积分10
48秒前
50秒前
53秒前
59秒前
iman完成签到,获得积分10
1分钟前
深情安青应助Jie采纳,获得40
1分钟前
Yangyang完成签到,获得积分10
1分钟前
lele完成签到,获得积分10
1分钟前
CodeCraft应助叙温雨采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得100
1分钟前
1分钟前
1分钟前
Ferry完成签到 ,获得积分10
1分钟前
Lulu完成签到,获得积分10
2分钟前
pluvia完成签到,获得积分10
2分钟前
冷傲小刀刀完成签到,获得积分10
2分钟前
kenyant驳回了iNk应助
2分钟前
zmx完成签到 ,获得积分0
2分钟前
Kamalika完成签到,获得积分10
2分钟前
科研花完成签到 ,获得积分10
2分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
3分钟前
wrry发布了新的文献求助10
3分钟前
4分钟前
叙温雨发布了新的文献求助10
4分钟前
Lucas应助叙温雨采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292090
求助须知:如何正确求助?哪些是违规求助? 4442784
关于积分的说明 13830421
捐赠科研通 4326084
什么是DOI,文献DOI怎么找? 2374641
邀请新用户注册赠送积分活动 1369974
关于科研通互助平台的介绍 1334349