A Privacy Preserving Computer-aided Medical Diagnosis Framework with Outsourced Model

计算机科学 软件部署 架空(工程) 加密 方案(数学) 访问控制 计算机安全 机器学习 人工智能 软件工程 数学 操作系统 数学分析
作者
Xiaobing Feng,Qingni Shen,Cong Liu,Xuewei Wang,Niantao Xie,Luyuan Xie,Yuejian Fang,Zhonghai Wu
标识
DOI:10.1109/bibm58861.2023.10385713
摘要

Computer-aided diagnosis plays an increasingly important role in modern medical activities, relying largely on the deployment of medical machine learning models. Protecting the security of model parameters is crucial for model providers. However, the current schemes for protecting model parameters are mostly interactive. This interactive nature makes it difficult to support offline deployment of models and flexible authorization of prediction results, thus hindering the widespread application of computer-aided diagnosis. To address these limitations, we propose a new computer-aided medical diagnosis framework by designing a new identity-based inner product functional proxy re-encryption (IB-IPFPRE) scheme. Our framework supports private deployment of medical diagnostic models without compromising model parameters. It also enables access control of prediction results based on user identity. Compared to existing privacy-preserving prediction techniques, our framework significantly reduces communication overhead and does not require the model owner to be online in real-time. Furthermore, our scheme enables flexible delegation of prediction results, allowing users to authorize the sharing of prediction results with other entities as needed. We conducted extensive experiments for logistic regression on three medical datasets. The experiments demonstrate that our scheme achieved 40% to 7× performance improvement in LAN environment and 13× to 15× improvement in WAN environment, and did not require any communication overhead during the privacy preserving prediction phase.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Xx丶采纳,获得10
刚刚
1秒前
1秒前
大个应助stoic采纳,获得30
2秒前
2秒前
2秒前
科研通AI6应助无误采纳,获得10
2秒前
carrier_hc完成签到,获得积分0
2秒前
晨雾锁阳完成签到 ,获得积分10
2秒前
3秒前
3秒前
解语花发布了新的文献求助10
3秒前
爆米花应助0的突破采纳,获得10
5秒前
沉默的谷丝完成签到,获得积分10
5秒前
zyq发布了新的文献求助10
6秒前
星辰大海应助贾111采纳,获得10
6秒前
呜哩哇啦发布了新的文献求助30
6秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
joeandrows完成签到,获得积分20
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
小明应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
aldehyde应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933807
求助须知:如何正确求助?哪些是违规求助? 4201872
关于积分的说明 13055364
捐赠科研通 3975957
什么是DOI,文献DOI怎么找? 2178625
邀请新用户注册赠送积分活动 1195002
关于科研通互助平台的介绍 1106406