乙状窦函数
收敛速度
算法
数学
核(代数)
趋同(经济学)
高斯分布
自适应滤波器
计算机科学
数学优化
人工智能
人工神经网络
计算机网络
频道(广播)
物理
组合数学
量子力学
经济
经济增长
作者
Huaiyuan Zhang,Guoliang Li,Hou Yun-xian,Hongbin Zhang,Xingli Zhou
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-12-29
卷期号:71 (5): 2869-2873
标识
DOI:10.1109/tcsii.2023.3348142
摘要
This paper proposes a novel Combined-Statistical-Distribution generalized maximum correntropy algorithm with affine projection to improve the convergence rate and tracking ability in system identification. We design a new generalized Gaussian kernel to measure the system error and utilize the sigmoid activation function as a transition strategy of the Combined-Statistical-Distribution (CSD) factor. Meanwhile, we use the inequality scaling method to improve the constraints to avoid reducing the convergence rate. Under the α-stable noise scenario and impulsive interference, the superiority of the proposed algorithm is demonstrated in system identification experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI