Towards a sustainable city: Deciphering the determinants of restorative park and spatial patterns

感知 公众参与地理信息系统 地理 专题地图 地理信息系统 环境规划 地图学 环境资源管理 心理学 环境科学 地理信息系统与公共卫生 神经科学
作者
Xin Li,Wen-Long Shang,Qiming Liu,Xin Liu,Zhihan Lyu,Washington Y. Ochieng
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:104: 105292-105292 被引量:2
标识
DOI:10.1016/j.scs.2024.105292
摘要

Urban parks have been found to provide mental health benefits. Some empirical studies have tested natural features and perceptual measures respectively, announcing their contribution to psychological restoration. However, inconsistent findings were occasionally reported, whereas few attempts have been made to combine both observed and perceptual factors for validation. Little is known about the variation of restorative drivers and their spatial patterns. To address these problems, this study combined public participation geographic information system (PPGIS) and deep learning method to capture visual qualities of landscape features along with several important perceptual measures. A typical urban park in Wuhan, China, was selected for a pilot study, and 1560 crowdsourced on-site images were collected, with thematic and geographic information being integrated. A series of statistical models, e.g., OLS, QRM, and MGWR, were employed successively for validation. The results showed that landscape preference, place attachment, greenery and water were validated as the global explanatory factors to estimate the conditional mean of psychological restoration. The variation of influential effects of these factors were detected at different restoration levels. There exist spatial heterogeneity for these influential factors on restorative effects. Findings provided new knowledge on a deeper understanding of the subtlety of restoration drivers and their spatial patterns. The findings offered useful insights and guidance for urban planners in creating high-quality green parks with restorative values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助DWRH采纳,获得10
刚刚
1秒前
星辰大海应助念姬采纳,获得10
1秒前
angel完成签到,获得积分10
2秒前
Notdodead发布了新的文献求助10
5秒前
7秒前
FJ完成签到,获得积分10
10秒前
瞿寒发布了新的文献求助10
11秒前
西瓜真的好圆完成签到,获得积分20
13秒前
科研通AI2S应助二十五采纳,获得10
13秒前
高高诗柳完成签到 ,获得积分10
14秒前
乐乐应助牛牛采纳,获得10
15秒前
17秒前
yx_cheng应助fcyyc采纳,获得10
17秒前
竞燃查无此人完成签到,获得积分10
19秒前
666应助一直采纳,获得10
21秒前
yydragen给xdd的求助进行了留言
21秒前
高谷菱发布了新的文献求助10
22秒前
26秒前
27秒前
hywel发布了新的文献求助10
29秒前
念姬发布了新的文献求助10
31秒前
牛牛发布了新的文献求助10
33秒前
jiben完成签到,获得积分10
33秒前
独特乘云完成签到,获得积分10
35秒前
传奇3应助牛牛眉目采纳,获得10
36秒前
USTC_xing完成签到,获得积分10
43秒前
45秒前
45秒前
奋斗人雄完成签到,获得积分10
47秒前
HHHZZZ完成签到,获得积分10
48秒前
牛牛完成签到,获得积分10
48秒前
iNk应助压力是多的采纳,获得20
48秒前
皮不起来的国国完成签到,获得积分10
49秒前
DAZIDAZI02发布了新的文献求助10
51秒前
NexusExplorer应助科研通管家采纳,获得10
52秒前
52秒前
可爱的函函应助小墨墨采纳,获得30
52秒前
彭于晏应助科研通管家采纳,获得10
52秒前
Hello应助科研通管家采纳,获得10
52秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374