Towards a sustainable city: Deciphering the determinants of restorative park and spatial patterns

感知 公众参与地理信息系统 地理 专题地图 地理信息系统 环境规划 地图学 环境资源管理 心理学 环境科学 地理信息系统与公共卫生 神经科学
作者
Xin Li,Wen-Long Shang,Qiming Liu,Xin Liu,Zhihan Lyu,Washington Y. Ochieng
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:104: 105292-105292 被引量:2
标识
DOI:10.1016/j.scs.2024.105292
摘要

Urban parks have been found to provide mental health benefits. Some empirical studies have tested natural features and perceptual measures respectively, announcing their contribution to psychological restoration. However, inconsistent findings were occasionally reported, whereas few attempts have been made to combine both observed and perceptual factors for validation. Little is known about the variation of restorative drivers and their spatial patterns. To address these problems, this study combined public participation geographic information system (PPGIS) and deep learning method to capture visual qualities of landscape features along with several important perceptual measures. A typical urban park in Wuhan, China, was selected for a pilot study, and 1560 crowdsourced on-site images were collected, with thematic and geographic information being integrated. A series of statistical models, e.g., OLS, QRM, and MGWR, were employed successively for validation. The results showed that landscape preference, place attachment, greenery and water were validated as the global explanatory factors to estimate the conditional mean of psychological restoration. The variation of influential effects of these factors were detected at different restoration levels. There exist spatial heterogeneity for these influential factors on restorative effects. Findings provided new knowledge on a deeper understanding of the subtlety of restoration drivers and their spatial patterns. The findings offered useful insights and guidance for urban planners in creating high-quality green parks with restorative values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
布鲁鲁完成签到,获得积分10
1秒前
草东树完成签到,获得积分10
1秒前
精明人达完成签到,获得积分10
1秒前
Laurie发布了新的文献求助10
1秒前
赘婿应助九局下半采纳,获得10
1秒前
果果给果果的求助进行了留言
1秒前
科研通AI6应助无铭亚空采纳,获得10
1秒前
ccwu发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
1秒前
2秒前
乐乐应助1234采纳,获得10
2秒前
mmz完成签到 ,获得积分10
2秒前
徐老师发布了新的文献求助10
3秒前
美丽完成签到 ,获得积分10
3秒前
CodeCraft应助文艺的夏波采纳,获得10
4秒前
4秒前
4秒前
酷波er应助Deb采纳,获得10
4秒前
4秒前
wenbin完成签到,获得积分10
5秒前
5秒前
毅然决然必然完成签到,获得积分10
5秒前
共享精神应助struggling2026采纳,获得10
5秒前
贤惠的煎蛋完成签到,获得积分10
5秒前
freebird应助zp4采纳,获得10
5秒前
ljy应助奋斗平卉采纳,获得10
6秒前
领导范儿应助奋斗平卉采纳,获得10
6秒前
阿拉艾浩基完成签到,获得积分10
6秒前
channy发布了新的文献求助10
6秒前
完美世界应助喜乐采纳,获得10
7秒前
哈哈哈完成签到,获得积分10
7秒前
lql完成签到 ,获得积分10
7秒前
111完成签到,获得积分10
7秒前
ww发布了新的文献求助10
7秒前
dt完成签到,获得积分10
7秒前
7秒前
8秒前
sunyanghu369发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271