Unsupervised anomaly detection and localization with one model for all category

异常检测 异常(物理) 人工智能 计算机科学 物理 凝聚态物理
作者
Pengjie Tan,Wai Keung Wong
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111533-111533 被引量:4
标识
DOI:10.1016/j.knosys.2024.111533
摘要

As most industrial products are defect-free, unsupervised anomaly detection and localization have become the focus of many researchers. In recent years, one-category-one-model algorithms have shown excellent performance on many datasets. However, algorithms in this paradigm are difficult and costly to maintain. In addition, existing algorithms that handle N categories with one model require a large number of samples to train the model, and their accuracy is low. To this end, we propose an unsupervised anomaly detection and localization algorithm with One Model for All Categories, referred to as OMAC. This method solves these problems by Lightweight Feature Extractors(LFE), Representativeness-based Sample Selection(RSS), and building Dual Memory Banks(DMB). We introduce the LFE to extract patch features and global features to reduce the time cost of model training and inference. To reduce the need for a large number of samples in existing methods, we propose an RSS algorithm to select representative samples for training the model. We propose a DMB algorithm based on a query mechanism to implement one model to detect all categories of products. Extensive experiments show that OMAC outperforms other state-of-the-art algorithms. Moreover, OMAC can achieve high frame rates of up to 58 FPS on the 3090 GPU, meeting the requirements of real-world factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缓慢夜阑完成签到 ,获得积分10
1秒前
1秒前
1秒前
德鲁猪完成签到,获得积分20
3秒前
香蕉觅云应助小青蛙OA采纳,获得10
3秒前
SUIJI发布了新的文献求助10
5秒前
Yara.H发布了新的文献求助30
7秒前
言襾早完成签到,获得积分20
9秒前
jackie发布了新的文献求助10
9秒前
仲夏之乐完成签到,获得积分10
10秒前
Zz发布了新的文献求助10
12秒前
SUIJI完成签到,获得积分10
13秒前
爆米花应助晨曦采纳,获得10
14秒前
xuanyu应助义气尔芙采纳,获得30
14秒前
orixero应助anlikek采纳,获得10
16秒前
隐形曼青应助欣喜的手机采纳,获得10
17秒前
西子阳发布了新的文献求助10
18秒前
19秒前
英俊的铭应助阿利呀采纳,获得10
20秒前
23秒前
zhayunlong完成签到,获得积分10
25秒前
库里强完成签到,获得积分10
25秒前
英姑应助chancewong采纳,获得10
25秒前
26秒前
Hello应助老实的三问采纳,获得30
26秒前
NexusExplorer应助Yara.H采纳,获得30
27秒前
情怀应助义气的嘉熙采纳,获得10
27秒前
库里强发布了新的文献求助10
28秒前
StarkGavin发布了新的文献求助10
29秒前
sunyafei完成签到,获得积分10
29秒前
赘婿应助Zz采纳,获得10
30秒前
Jara发布了新的文献求助100
31秒前
32秒前
斯文百招发布了新的文献求助10
32秒前
幽默的乘风完成签到,获得积分0
33秒前
Hank发布了新的文献求助10
35秒前
35秒前
StarkGavin完成签到,获得积分10
35秒前
田様应助zxy采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055707
求助须知:如何正确求助?哪些是违规求助? 2712333
关于积分的说明 7431052
捐赠科研通 2357290
什么是DOI,文献DOI怎么找? 1248745
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144