Unsupervised anomaly detection and localization with one model for all category

异常检测 异常(物理) 人工智能 计算机科学 物理 凝聚态物理
作者
Pengjie Tan,Wai Keung Wong
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111533-111533 被引量:16
标识
DOI:10.1016/j.knosys.2024.111533
摘要

As most industrial products are defect-free, unsupervised anomaly detection and localization have become the focus of many researchers. In recent years, one-category-one-model algorithms have shown excellent performance on many datasets. However, algorithms in this paradigm are difficult and costly to maintain. In addition, existing algorithms that handle N categories with one model require a large number of samples to train the model, and their accuracy is low. To this end, we propose an unsupervised anomaly detection and localization algorithm with One Model for All Categories, referred to as OMAC. This method solves these problems by Lightweight Feature Extractors(LFE), Representativeness-based Sample Selection(RSS), and building Dual Memory Banks(DMB). We introduce the LFE to extract patch features and global features to reduce the time cost of model training and inference. To reduce the need for a large number of samples in existing methods, we propose an RSS algorithm to select representative samples for training the model. We propose a DMB algorithm based on a query mechanism to implement one model to detect all categories of products. Extensive experiments show that OMAC outperforms other state-of-the-art algorithms. Moreover, OMAC can achieve high frame rates of up to 58 FPS on the 3090 GPU, meeting the requirements of real-world factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pajfew应助David采纳,获得20
刚刚
偷书贼完成签到,获得积分10
刚刚
刚刚
刚刚
西西完成签到,获得积分10
刚刚
HK完成签到,获得积分10
1秒前
标致忆丹完成签到,获得积分10
1秒前
昌怜烟发布了新的文献求助10
1秒前
土豆完成签到,获得积分10
2秒前
lqm完成签到,获得积分10
2秒前
moonlight完成签到,获得积分10
2秒前
chenqinqin发布了新的文献求助10
2秒前
yhyhyh完成签到,获得积分20
2秒前
共享精神应助糊涂的老师采纳,获得30
2秒前
Xuemin完成签到,获得积分10
3秒前
3秒前
kajimi完成签到,获得积分10
3秒前
运气爆彭发布了新的文献求助10
3秒前
tiezhu发布了新的文献求助10
4秒前
飞翔的葡萄籽完成签到,获得积分10
4秒前
sy发布了新的文献求助10
4秒前
小碎步完成签到,获得积分10
5秒前
liujunhong完成签到,获得积分10
5秒前
5秒前
SS1415完成签到 ,获得积分10
6秒前
huanhuan发布了新的文献求助10
6秒前
6秒前
硬币完成签到,获得积分10
6秒前
鳄鱼队长完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
田様应助shugefuhe采纳,获得10
7秒前
超帅方盒完成签到,获得积分10
7秒前
霸气的元彤完成签到,获得积分10
7秒前
边缘选手完成签到,获得积分10
8秒前
尙光完成签到,获得积分10
9秒前
9秒前
Hello~完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977