Unsupervised anomaly detection and localization with one model for all category

异常检测 异常(物理) 人工智能 计算机科学 物理 凝聚态物理
作者
Pengjie Tan,Wai Keung Wong
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111533-111533 被引量:8
标识
DOI:10.1016/j.knosys.2024.111533
摘要

As most industrial products are defect-free, unsupervised anomaly detection and localization have become the focus of many researchers. In recent years, one-category-one-model algorithms have shown excellent performance on many datasets. However, algorithms in this paradigm are difficult and costly to maintain. In addition, existing algorithms that handle N categories with one model require a large number of samples to train the model, and their accuracy is low. To this end, we propose an unsupervised anomaly detection and localization algorithm with One Model for All Categories, referred to as OMAC. This method solves these problems by Lightweight Feature Extractors(LFE), Representativeness-based Sample Selection(RSS), and building Dual Memory Banks(DMB). We introduce the LFE to extract patch features and global features to reduce the time cost of model training and inference. To reduce the need for a large number of samples in existing methods, we propose an RSS algorithm to select representative samples for training the model. We propose a DMB algorithm based on a query mechanism to implement one model to detect all categories of products. Extensive experiments show that OMAC outperforms other state-of-the-art algorithms. Moreover, OMAC can achieve high frame rates of up to 58 FPS on the 3090 GPU, meeting the requirements of real-world factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_X89o6n完成签到,获得积分10
刚刚
yi发布了新的文献求助10
刚刚
骆如松应助羊羊采纳,获得10
1秒前
Alet发布了新的文献求助10
1秒前
小不完成签到 ,获得积分10
2秒前
田様应助嘀嘀嘀采纳,获得10
2秒前
King完成签到,获得积分10
3秒前
小憨瀚发布了新的文献求助10
3秒前
xctdyl1992完成签到,获得积分20
4秒前
whh发布了新的文献求助20
4秒前
科研通AI2S应助kite采纳,获得10
4秒前
孤独的珩完成签到,获得积分10
4秒前
隐形曼青应助lily88采纳,获得10
5秒前
6秒前
6秒前
Nelly发布了新的文献求助50
7秒前
Fantastic完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
嘀嘀嘀完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
Orange应助活泼之卉采纳,获得10
12秒前
雪山冰川发布了新的文献求助10
13秒前
星河之外spectator完成签到,获得积分10
13秒前
苏习习发布了新的文献求助30
14秒前
傅三毒发布了新的文献求助10
15秒前
15秒前
寒冷荧荧完成签到,获得积分10
16秒前
杳鸢应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486597
求助须知:如何正确求助?哪些是违规求助? 3074909
关于积分的说明 9138437
捐赠科研通 2767041
什么是DOI,文献DOI怎么找? 1518444
邀请新用户注册赠送积分活动 702966
科研通“疑难数据库(出版商)”最低求助积分说明 701516