Unsupervised anomaly detection and localization with one model for all category

异常检测 异常(物理) 人工智能 计算机科学 物理 凝聚态物理
作者
Pengjie Tan,Wai Keung Wong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:289: 111533-111533 被引量:8
标识
DOI:10.1016/j.knosys.2024.111533
摘要

As most industrial products are defect-free, unsupervised anomaly detection and localization have become the focus of many researchers. In recent years, one-category-one-model algorithms have shown excellent performance on many datasets. However, algorithms in this paradigm are difficult and costly to maintain. In addition, existing algorithms that handle N categories with one model require a large number of samples to train the model, and their accuracy is low. To this end, we propose an unsupervised anomaly detection and localization algorithm with One Model for All Categories, referred to as OMAC. This method solves these problems by Lightweight Feature Extractors(LFE), Representativeness-based Sample Selection(RSS), and building Dual Memory Banks(DMB). We introduce the LFE to extract patch features and global features to reduce the time cost of model training and inference. To reduce the need for a large number of samples in existing methods, we propose an RSS algorithm to select representative samples for training the model. We propose a DMB algorithm based on a query mechanism to implement one model to detect all categories of products. Extensive experiments show that OMAC outperforms other state-of-the-art algorithms. Moreover, OMAC can achieve high frame rates of up to 58 FPS on the 3090 GPU, meeting the requirements of real-world factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bofu发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
ran发布了新的文献求助10
3秒前
马昊东完成签到,获得积分10
3秒前
GQ发布了新的文献求助10
4秒前
Yulin Yu发布了新的文献求助10
4秒前
4秒前
完美世界应助zhjeddie采纳,获得10
4秒前
阔达靖琪完成签到,获得积分20
4秒前
shy完成签到,获得积分10
5秒前
6秒前
Sigramm完成签到,获得积分10
6秒前
bofu发布了新的文献求助30
7秒前
该换手机发布了新的文献求助10
8秒前
8秒前
WeiBao发布了新的文献求助10
9秒前
rush完成签到,获得积分10
9秒前
9秒前
领导范儿应助含蓄康采纳,获得10
11秒前
Yulin Yu完成签到,获得积分10
12秒前
传奇3应助zh采纳,获得10
12秒前
bofu发布了新的文献求助10
14秒前
14秒前
ED应助阳阳采纳,获得10
14秒前
ran完成签到,获得积分10
14秒前
长情琦完成签到,获得积分10
14秒前
ssw发布了新的文献求助10
14秒前
等等等等完成签到,获得积分10
15秒前
17秒前
19秒前
wen完成签到,获得积分10
20秒前
21秒前
Lucas应助wbl1025采纳,获得30
21秒前
bofu发布了新的文献求助10
21秒前
落寞鞋子完成签到,获得积分10
21秒前
21秒前
zhaoqing完成签到,获得积分10
22秒前
啊啊发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975722
求助须知:如何正确求助?哪些是违规求助? 3520056
关于积分的说明 11200719
捐赠科研通 3256455
什么是DOI,文献DOI怎么找? 1798271
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390