Unsupervised anomaly detection and localization with one model for all category

异常检测 异常(物理) 人工智能 计算机科学 物理 凝聚态物理
作者
Pengjie Tan,Wai Keung Wong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:289: 111533-111533 被引量:8
标识
DOI:10.1016/j.knosys.2024.111533
摘要

As most industrial products are defect-free, unsupervised anomaly detection and localization have become the focus of many researchers. In recent years, one-category-one-model algorithms have shown excellent performance on many datasets. However, algorithms in this paradigm are difficult and costly to maintain. In addition, existing algorithms that handle N categories with one model require a large number of samples to train the model, and their accuracy is low. To this end, we propose an unsupervised anomaly detection and localization algorithm with One Model for All Categories, referred to as OMAC. This method solves these problems by Lightweight Feature Extractors(LFE), Representativeness-based Sample Selection(RSS), and building Dual Memory Banks(DMB). We introduce the LFE to extract patch features and global features to reduce the time cost of model training and inference. To reduce the need for a large number of samples in existing methods, we propose an RSS algorithm to select representative samples for training the model. We propose a DMB algorithm based on a query mechanism to implement one model to detect all categories of products. Extensive experiments show that OMAC outperforms other state-of-the-art algorithms. Moreover, OMAC can achieve high frame rates of up to 58 FPS on the 3090 GPU, meeting the requirements of real-world factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小巧的虔发布了新的文献求助10
2秒前
iui飞发布了新的文献求助10
2秒前
科研通AI2S应助jiang采纳,获得10
2秒前
小青龙完成签到,获得积分10
3秒前
ws完成签到,获得积分20
4秒前
4秒前
天天快乐应助1234采纳,获得10
5秒前
PRIPRO发布了新的文献求助10
5秒前
萧萧完成签到,获得积分10
5秒前
Akim应助小小小何77采纳,获得10
5秒前
shinysparrow应助烟波钓客采纳,获得200
6秒前
hetao286发布了新的文献求助10
6秒前
脑洞疼应助乐观的忘幽采纳,获得10
7秒前
泰裤辣完成签到,获得积分10
7秒前
勤劳太阳发布了新的文献求助10
10秒前
regene完成签到,获得积分10
10秒前
HelloKun发布了新的文献求助10
10秒前
wml完成签到 ,获得积分10
11秒前
LaTeXer应助平常囧采纳,获得50
11秒前
dingz完成签到,获得积分10
15秒前
可爱的函函应助七七采纳,获得10
15秒前
赘婿应助爱听歌初曼采纳,获得10
15秒前
17秒前
17秒前
18秒前
万能图书馆应助自信河马采纳,获得10
18秒前
小蘑菇应助易昭华采纳,获得10
19秒前
xkyasc发布了新的文献求助10
21秒前
小圆发布了新的文献求助10
21秒前
21秒前
SheepIce发布了新的文献求助30
22秒前
Jonathan完成签到,获得积分10
23秒前
果果完成签到,获得积分10
24秒前
24秒前
季康发布了新的文献求助10
24秒前
大菊发布了新的文献求助10
24秒前
1234完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891