AnnoSM: An Automated Annotation Tool for Determining the Substituent Modes on the Parent Skeleton Based on a Characteristic MS/MS Fragment Ion Library

化学 注释 黄酮类 取代基 片段(逻辑) 质谱法 软件 黄酮醇 触摸屏 立体化学 类黄酮 色谱法 人工智能 计算机科学 有机化学 程序设计语言 抗氧化剂 操作系统
作者
Xing Wang,A. Q. Guo,Rui Wang,Wen Gao,Hua Yang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (9): 3817-3828
标识
DOI:10.1021/acs.analchem.3c04946
摘要

Mass spectrometry (MS) is a powerful technology for the structural elucidation of known or unknown small molecules. However, the accuracy of MS-based structure annotation is still limited due to the presence of numerous isomers in complex matrices. There are still challenges in automatically interpreting the fine structure of molecules, such as the types and positions of substituents (substituent modes, SMs) in the structure. In this study, we employed flavones, flavonols, and isoflavones as examples to develop an automated annotation method for identifying the SMs on the parent molecular skeleton based on a characteristic MS/MS fragment ion library. Importantly, user-friendly software AnnoSM was built for the convenience of researchers with limited computational backgrounds. It achieved 76.87% top-1 accuracy on the 148 authentic standards. Among them, 22 sets of flavonoid isomers were successfully differentiated. Moreover, the developed method was successfully applied to complex matrices. One such example is the extract of Ginkgo biloba L. (EGB), in which 331 possible flavonoids with SM candidates were annotated. Among them, 23 flavonoids were verified by authentic standards. The correct SMs of 13 flavonoids were ranked first on the candidate list. In the future, this software can also be extrapolated to other classes of compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助CHH采纳,获得30
刚刚
刚刚
啊哈哈哈发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
花开发布了新的文献求助10
7秒前
NexusExplorer应助wyt采纳,获得10
7秒前
夏青荷发布了新的文献求助10
8秒前
嘟嘟发布了新的文献求助10
8秒前
齐嘉懿发布了新的文献求助10
9秒前
10秒前
15秒前
可爱凯发布了新的文献求助10
15秒前
17秒前
17秒前
洪皓然发布了新的文献求助10
17秒前
韭菜完成签到,获得积分20
19秒前
广旭发布了新的文献求助10
21秒前
21秒前
韭菜发布了新的文献求助10
22秒前
脑洞疼应助小鱼采纳,获得10
24秒前
夏青荷发布了新的文献求助10
27秒前
30秒前
30秒前
32秒前
CHH完成签到,获得积分20
34秒前
34秒前
35秒前
勤恳的磬发布了新的文献求助10
35秒前
冷酷慕山发布了新的文献求助10
35秒前
36秒前
36秒前
36秒前
ddd完成签到,获得积分10
37秒前
不配.应助伊麦香城采纳,获得10
38秒前
Clytze发布了新的文献求助10
40秒前
Boren完成签到,获得积分10
40秒前
善学以致用应助花开采纳,获得10
41秒前
SciGPT应助顺心的水之采纳,获得10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870