Prediction of Morbidity and Mortality After Esophagectomy: A Systematic Review

外科肿瘤学 医学 食管切除术 普通外科 梅德林 重症监护医学 食管癌 肿瘤科 内科学 癌症 政治学 法学
作者
M. P. van Nieuw Amerongen,Harm-Jan de Grooth,Gigi Veerman,Kirsten A. Ziesemer,Mark I. van Berge Henegouwen,P. R. Tuinman
出处
期刊:Annals of Surgical Oncology [Springer Nature]
标识
DOI:10.1245/s10434-024-14997-4
摘要

Abstract Background Esophagectomy for esophageal cancer has a complication rate of up to 60%. Prediction models could be helpful to preoperatively estimate which patients are at increased risk of morbidity and mortality. The objective of this study was to determine the best prediction models for morbidity and mortality after esophagectomy and to identify commonalities among the models. Patients and Methods A systematic review was performed in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and was prospectively registered in PROSPERO ( https://www.crd.york.ac.uk/prospero/ , study ID CRD42022350846). Pubmed, Embase, and Clarivate Analytics/Web of Science Core Collection were searched for studies published between 2010 and August 2022. The Prediction model Risk of Bias Assessment Tool was used to assess the risk of bias. Extracted data were tabulated and a narrative synthesis was performed. Results Of the 15,011 articles identified, 22 studies were included using data from tens of thousands of patients. This systematic review included 33 different models, of which 18 models were newly developed. Many studies showed a high risk of bias. The prognostic accuracy of models differed between 0.51 and 0.85. For most models, variables are readily available. Two models for mortality and one model for pulmonary complications have the potential to be developed further. Conclusions The availability of rigorous prediction models is limited. Several models are promising but need to be further developed. Some models provide information about risk factors for the development of complications. Performance status is a potential modifiable risk factor. None are ready for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Robe采纳,获得10
2秒前
5秒前
5秒前
开心发布了新的文献求助10
5秒前
尼铬完成签到,获得积分10
5秒前
娄医生发布了新的文献求助10
6秒前
7秒前
共享精神应助读书破万卷采纳,获得10
8秒前
10秒前
祖宁发布了新的文献求助10
10秒前
lsq发布了新的文献求助10
11秒前
天天完成签到,获得积分10
11秒前
11秒前
壮观的夏云完成签到,获得积分10
12秒前
12秒前
luyee发布了新的文献求助10
12秒前
hshsh发布了新的文献求助10
17秒前
hailiangzheng完成签到,获得积分10
19秒前
华仔应助陶弈衡采纳,获得10
22秒前
26秒前
Ygy完成签到,获得积分10
27秒前
27秒前
hellzhu完成签到,获得积分10
28秒前
31秒前
31秒前
34秒前
34秒前
心子吖完成签到,获得积分10
34秒前
lsq完成签到,获得积分10
35秒前
35秒前
Lucky应助大意的柚子采纳,获得10
36秒前
ZQP发布了新的文献求助10
39秒前
39秒前
读书破万卷完成签到,获得积分10
40秒前
Whale完成签到 ,获得积分10
40秒前
40秒前
科目三应助Xianhe采纳,获得10
41秒前
壮观问寒应助科研通管家采纳,获得10
41秒前
慕青应助科研通管家采纳,获得10
41秒前
Jasper应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103