Early bearing fault diagnosis for imbalanced data in offshore wind turbine using improved deep learning based on scaled minimum unscented kalman filter

卡尔曼滤波器 涡轮机 方位(导航) 断层(地质) 海上风力发电 无味变换 扩展卡尔曼滤波器 海底管道 快速卡尔曼滤波 控制理论(社会学) 人工智能 计算机科学 海洋工程 工程类 地质学 航空航天工程 岩土工程 地震学 控制(管理)
作者
Haihong Tang,Kun Zhang,Bing Wang,Zu Xiao-Tao,Youyi Li,Wuwei Feng,Xue Jiang,Peng Chen,Qingan Li
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:300: 117392-117392 被引量:3
标识
DOI:10.1016/j.oceaneng.2024.117392
摘要

The development of low-speed fault diagnosis methods especially in offshore wind turbines is considered of utmost importance for mainly solving two challenges. These include diagnosis based on imbalanced data with low signal to noise ratio and invariant features acquired from multi-sensors. To effectively address these issues, in this work, an improved deep belief network, termed Scaled-minimum Unscented Kalman Filter-aided DBN, was proposed for processing imbalanced data under low-speed. First, a Gramian Angular Summation Field was designed to preserve absolute temporal relation in time-series for 2-D feature maps. Second, the traditional deep belief network was improved by using a Scaled-minimum Unscented Kalman Filter to enhance the nonlinear tracking ability. The latter can make the feature representation of 2-D feature maps dynamically adapt its configuration and enhance the anti-noise ability of the diagnosis model. Wherein, minimum sigma set and scaled unscented transform were introduced to improve the ability of discriminative fault features in imbalanced data with low-speed, making the diagnostic model more efficient. Two different low-speed experimental cases were conducted to analyse the performance of the proposed method. From the extracted results, the anti-noise ability to diagnose the fault in imbalanced data was demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41应助momo采纳,获得10
2秒前
长情琦完成签到,获得积分10
3秒前
3秒前
研友_yLpYkn完成签到,获得积分10
3秒前
Mr兔仙森发布了新的文献求助10
3秒前
4秒前
7秒前
xueyu发布了新的文献求助10
7秒前
7秒前
文献完成签到 ,获得积分10
8秒前
levicho发布了新的文献求助10
9秒前
KK发布了新的文献求助10
10秒前
11秒前
Norl_Corxilea发布了新的文献求助10
12秒前
CodeCraft应助愉快的宛儿采纳,获得10
13秒前
一方通行发布了新的文献求助10
13秒前
levicho完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
16秒前
17秒前
Norl_Corxilea完成签到,获得积分10
18秒前
21秒前
我是老大应助Culto采纳,获得10
22秒前
24秒前
超帅青烟完成签到,获得积分10
24秒前
24秒前
科目三应助KK采纳,获得10
25秒前
Shuaibin_Pei完成签到,获得积分10
28秒前
张今天也要做科研呀完成签到,获得积分10
28秒前
shinysparrow完成签到,获得积分0
28秒前
传奇3应助LJJ采纳,获得10
29秒前
30秒前
31秒前
科研蚂蚁完成签到,获得积分10
32秒前
桃子完成签到 ,获得积分10
32秒前
魁梧的鲂发布了新的文献求助10
35秒前
健忘白应助su采纳,获得10
35秒前
Culto发布了新的文献求助10
36秒前
37秒前
猫猫完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173