Crowding-Out in Content Monetization Under Pay What You Want: Evidence From Live Streaming

货币化 业务 内容(测量理论) 拥挤 直播流媒体 广告 支付意愿 计算机科学 营销 互联网隐私 经济 微观经济学 多媒体 心理学 数学分析 宏观经济学 神经科学 数学
作者
Dai Yao,Shijie Lu,Xingyu Chen
出处
期刊:Production and Operations Management [Wiley]
卷期号:34 (12): 3937-3957 被引量:9
标识
DOI:10.1177/10591478231224948
摘要

Live streaming has emerged as an innovative means for content providers (broadcasters) to monetize their content in real time under pay-what-you-want pricing. In a typical live stream, consumers (viewers) watch the content and decide whether and how much to tip the broadcaster in the form of virtual gifts that have been purchased with real money. Unlike offline contexts where payment is often nontransparent, both payment activities and sender identities are transparent or publicly observable in live streams. Hence, understanding to what extent and how tipping influences broadcasters’ emotional reactions and peer viewers’ engagement activities becomes relevant and meaningful. In this study, we examine the social impact of viewer tipping activity by running a field experiment on a popular live-streaming platform in China. We deploy synthetic viewers to both treated and control streams. These synthetic viewers send random tip amounts at random times in only the treated and not the control streams, which then exogenously alters the tips that are observed by the audience. We find that broadcasters tend to provide an emotional and reciprocal reaction in response to additional viewer tips, which is measured by the broadcasters’ level of happiness as discerned from their facial expressions. Viewers tend to tip less, chat less, and leave the current stream sooner when seeing more tips from peers, suggesting a negative crowding-out effect on viewer engagement. Nevertheless, the crowding-out effect does not apply to the number of likes, which are displayed without viewer identities in a live stream. In addition, such crowding-out effects manifest mainly in those viewers who tipped heavily before the experiment, possibly because heavy tippers care more about social status than their counterparts. These results collectively suggest that the pursuit of social status is a plausible driver of the observed crowding-out effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助11采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
欣喜的听枫完成签到,获得积分10
2秒前
z.发布了新的文献求助10
3秒前
FBI汪宁完成签到,获得积分10
3秒前
jian发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助沉默手套采纳,获得10
3秒前
hooke完成签到,获得积分10
3秒前
独特的自中完成签到,获得积分20
3秒前
4秒前
4秒前
酷波er应助PURPLE采纳,获得10
4秒前
4秒前
4秒前
上官若男应助峥嵘采纳,获得10
5秒前
陶治发布了新的文献求助10
5秒前
Yz_Dai完成签到,获得积分10
5秒前
5秒前
华仔应助栗子采纳,获得10
6秒前
英姑应助hyy采纳,获得10
6秒前
scc完成签到,获得积分10
7秒前
7秒前
MAXDONE完成签到,获得积分10
8秒前
我是老大应助EASA采纳,获得10
8秒前
8秒前
8秒前
8秒前
整齐乌发布了新的文献求助10
9秒前
脑洞疼应助愉快的莹采纳,获得10
9秒前
9秒前
9秒前
10秒前
Angora发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785