Synthesis and characterization of Co3O4 spinel nanowall: understanding the growth mechanism and properties

尖晶石 表征(材料科学) 材料科学 机制(生物学) 纳米技术 化学工程 化学物理 工程物理 冶金 物理 量子力学 工程类
作者
Sushil Barala,Sri Aurobindo Panda,S. Gangopadhyay
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (5): 055915-055915
标识
DOI:10.1088/1402-4896/ad3388
摘要

Abstract Formation of spinel tricobalt tetraoxide (Co 3 O 4 ) nanostructures through a controlled thermal oxidation process is discussed here. Thin films of high purity cobalt (Co) were deposited on glass/quartz substrates using an electron beam (E-beam) evaporation technique. Thermal oxidation of the as-deposited Co thin films was carried out at various oxidation temperatures (400 °C to 600 °C) for different durations (5 h to 15 h) to grow various oxide nanostructures. Different surface characterizations techniques were used to investigate the structure, chemistry and electronic properties of the as-grown cobalt oxide nanostructures. x-ray diffraction analysis revealed the presence of the CoO phase along with the Co 3 O 4 phases at relatively lower oxidation temperature. However, the Co 3 O 4 phase becomes more predominant for longer oxidation durations at higher oxidation temperatures. Field emission scanning electron microscopy analysis showed a surface morphological transition from nanowalls to nanograins with an increase in the oxidation temperature. The surface electrical conductivity of the oxidized Co films is also increased for higher oxidation temperature and/or duration mainly due to the oxide phase purity and larger particle sizes. Ultraviolet–visible spectroscopy indicated two distinct optical energy bandgaps, which effectively decreased with an increase in the oxidation temperature and duration. Raman spectroscopy identified five different Raman-active modes corresponding to the Co 3 O 4 phase, with the F 2g mode dominating at higher temperatures. All these findings provide clear insights into the structural, electrical, chemical and optical properties of cobalt oxide thin films. Moreover, it provides a mechanism on how to grow 2D nanowalls morphology of Co 3 O 4 films which can further be used in energy, sensor or catalytic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz2905发布了新的文献求助10
1秒前
一蓑烟雨完成签到,获得积分10
1秒前
1秒前
3秒前
崔崔发布了新的文献求助10
4秒前
ff不吃芹菜完成签到,获得积分10
5秒前
叶子完成签到,获得积分10
5秒前
唐唐完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
9秒前
朵朵完成签到,获得积分10
11秒前
发呆的小号完成签到 ,获得积分10
11秒前
充电宝应助原本采纳,获得10
13秒前
山260完成签到 ,获得积分10
13秒前
badada完成签到,获得积分10
13秒前
田様应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
伶俐乐菱应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
shadow完成签到,获得积分10
17秒前
sen123完成签到,获得积分10
18秒前
123完成签到,获得积分20
19秒前
20秒前
NATURECATCHER完成签到,获得积分10
20秒前
温暖霸完成签到,获得积分10
20秒前
以筱完成签到,获得积分10
21秒前
NexusExplorer应助崔崔采纳,获得10
21秒前
CipherSage应助Passskd采纳,获得10
25秒前
26秒前
子睿完成签到,获得积分10
26秒前
背后雨柏完成签到 ,获得积分10
26秒前
27秒前
nanana发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
五月初夏完成签到,获得积分10
28秒前
hannah发布了新的文献求助10
31秒前
songvv完成签到,获得积分20
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022