Synthesis and characterization of Co3O4 spinel nanowall: understanding the growth mechanism and properties

尖晶石 表征(材料科学) 材料科学 机制(生物学) 纳米技术 化学工程 化学物理 工程物理 冶金 物理 量子力学 工程类
作者
Sushil Barala,Sri Aurobindo Panda,S. Gangopadhyay
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (5): 055915-055915
标识
DOI:10.1088/1402-4896/ad3388
摘要

Abstract Formation of spinel tricobalt tetraoxide (Co 3 O 4 ) nanostructures through a controlled thermal oxidation process is discussed here. Thin films of high purity cobalt (Co) were deposited on glass/quartz substrates using an electron beam (E-beam) evaporation technique. Thermal oxidation of the as-deposited Co thin films was carried out at various oxidation temperatures (400 °C to 600 °C) for different durations (5 h to 15 h) to grow various oxide nanostructures. Different surface characterizations techniques were used to investigate the structure, chemistry and electronic properties of the as-grown cobalt oxide nanostructures. x-ray diffraction analysis revealed the presence of the CoO phase along with the Co 3 O 4 phases at relatively lower oxidation temperature. However, the Co 3 O 4 phase becomes more predominant for longer oxidation durations at higher oxidation temperatures. Field emission scanning electron microscopy analysis showed a surface morphological transition from nanowalls to nanograins with an increase in the oxidation temperature. The surface electrical conductivity of the oxidized Co films is also increased for higher oxidation temperature and/or duration mainly due to the oxide phase purity and larger particle sizes. Ultraviolet–visible spectroscopy indicated two distinct optical energy bandgaps, which effectively decreased with an increase in the oxidation temperature and duration. Raman spectroscopy identified five different Raman-active modes corresponding to the Co 3 O 4 phase, with the F 2g mode dominating at higher temperatures. All these findings provide clear insights into the structural, electrical, chemical and optical properties of cobalt oxide thin films. Moreover, it provides a mechanism on how to grow 2D nanowalls morphology of Co 3 O 4 films which can further be used in energy, sensor or catalytic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yanqiu采纳,获得10
1秒前
景代丝完成签到,获得积分10
1秒前
充电宝应助roro熊采纳,获得10
1秒前
2秒前
可爱的函函应助哈哈采纳,获得10
4秒前
7秒前
yueyue发布了新的文献求助10
8秒前
8秒前
feifei完成签到,获得积分10
12秒前
Tan完成签到 ,获得积分10
12秒前
roro熊发布了新的文献求助10
13秒前
Hope完成签到,获得积分10
13秒前
内向蜡烛发布了新的文献求助10
13秒前
14秒前
17秒前
18秒前
michael发布了新的文献求助10
18秒前
哈哈发布了新的文献求助10
19秒前
闪闪的翠绿完成签到,获得积分20
19秒前
你嵙这个期刊没买应助lyb采纳,获得10
22秒前
32429606完成签到 ,获得积分10
23秒前
23秒前
dandandan完成签到 ,获得积分10
24秒前
阡陌完成签到,获得积分10
28秒前
秀丽机器猫关注了科研通微信公众号
32秒前
哈哈完成签到,获得积分10
32秒前
HH完成签到,获得积分10
32秒前
深情安青应助闪闪的翠绿采纳,获得10
33秒前
科研通AI2S应助迅速路人采纳,获得10
34秒前
方圆几里完成签到,获得积分10
35秒前
35秒前
cocobear完成签到 ,获得积分10
37秒前
万能图书馆应助zjl1112采纳,获得50
38秒前
111完成签到 ,获得积分10
39秒前
huyan发布了新的文献求助10
41秒前
坚定的迎波完成签到,获得积分10
45秒前
yoneyamai完成签到,获得积分10
49秒前
50秒前
MQueen完成签到,获得积分10
51秒前
zm完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650595
关于积分的说明 14691947
捐赠科研通 4592539
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492048
关于科研通互助平台的介绍 1463269