DEA-Net: Single Image Dehazing Based on Detail-Enhanced Convolution and Content-Guided Attention

卷积(计算机科学) 计算机科学 人工智能 块(置换群论) 计算机视觉 特征(语言学) 卷积神经网络 保险丝(电气) 编码(集合论) 深度学习 模式识别(心理学) 算法 数学 人工神经网络 哲学 工程类 电气工程 集合(抽象数据类型) 程序设计语言 语言学 几何学
作者
Zixuan Chen,Zewei He,Zhe‐Ming Lu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1002-1015 被引量:163
标识
DOI:10.1109/tip.2024.3354108
摘要

Single image dehazing is a challenging ill-posed problem which estimates latent haze-free images from observed hazy images. Some existing deep learning based methods are devoted to improving the model performance via increasing the depth or width of convolution. The learning ability of Convolutional Neural Network (CNN) structure is still under-explored. In this paper, a Detail-Enhanced Attention Block (DEAB) consisting of Detail-Enhanced Convolution (DEConv) and Content-Guided Attention (CGA) is proposed to boost the feature learning for improving the dehazing performance. Specifically, the DEConv contains difference convolutions which can integrate prior information to complement the vanilla one and enhance the representation capacity. Then by using the re-parameterization technique, DEConv is equivalently converted into a vanilla convolution to reduce parameters and computational cost. By assigning the unique Spatial Importance Map (SIM) to every channel, CGA can attend more useful information encoded in features. In addition, a CGA-based mixup fusion scheme is presented to effectively fuse the features and aid the gradient flow. By combining above mentioned components, we propose our Detail-Enhanced Attention Network (DEA-Net) for recovering high-quality haze-free images. Extensive experimental results demonstrate the effectiveness of our DEA-Net, outperforming the state-of-the-art (SOTA) methods by boosting the PSNR index over 41 dB with only 3.653 M parameters. (The source code of our DEA-Net is available at https://github.com/cecret3350/DEA-Net.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助俏皮的白柏采纳,获得10
刚刚
量子星尘发布了新的文献求助10
3秒前
充电宝应助Jay采纳,获得10
5秒前
orixero应助qp采纳,获得10
7秒前
醍醐不醒完成签到 ,获得积分10
8秒前
gaberella完成签到,获得积分10
9秒前
沐晴发布了新的文献求助150
10秒前
LANER完成签到 ,获得积分10
10秒前
11秒前
xmk完成签到 ,获得积分10
12秒前
cindywu完成签到,获得积分10
12秒前
ccc发布了新的文献求助10
12秒前
14秒前
15秒前
16秒前
16秒前
Star1983发布了新的文献求助10
20秒前
20秒前
坚定馒头发布了新的文献求助10
20秒前
项绝义发布了新的文献求助200
21秒前
Supreme发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
26秒前
26秒前
28秒前
青柠发布了新的文献求助10
28秒前
nannan发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
TKTK发布了新的文献求助30
30秒前
Stroeve发布了新的文献求助20
31秒前
35秒前
36秒前
37秒前
39秒前
lelelele发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052