亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Path Planning for AUV in Dynamic Ocean Scenarios: A Lightweight Neural Dynamics Network Approach

人工神经网络 计算机科学 动力学(音乐) 路径(计算) 运动规划 人工智能 计算机网络 机器人 物理 声学
作者
Song Han,Jiaao Zhao,Xinbin Li,Junzhi Yu,Shuili Wang,Zhixin Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3782-3795 被引量:4
标识
DOI:10.1109/tiv.2024.3356529
摘要

In this study, the online path planning problem for autonomous underwater vehicle, which is constrained by the limited hardware computation and energy-carrying capabilities, is studied under the interference of dynamic ocean currents. To address this issue, an online lightweight neural dynamics approach is proposed to plan paths with low time and energy consumption in ocean currents scenarios. Firstly, the lightweight rapid propagation neural dynamics network, which involves the low complexity structure and the rapid propagation mechanism, is constructed. The proposed low connection-computation complexity neural dynamics network structure can reduce the number of adjacent neurons and the computation of neural connection weights by the customized division. The proposed rapid propagation mechanism can enhance the propagation directionality to speed up the convergence of the neural dynamics network. Then, the fused-ocean-currents path-generation mechanism is proposed to fuse the local adjacent ocean currents information into the neural activity values to reconstruct the neural activity value gradient, which can timely reflect the low time and energy consumption paths. In this way, the relatively advantageous ocean currents can be fully utilized and the relatively adverse ocean currents can be actively avoided to efficiently save the navigational time and energy. Furthermore, the event-trigger-based path-screening mechanism is proposed to adaptively avoid detecting unnecessary ocean currents information, thereby reducing the detecting energy consumption. Finally, the superior performance of the proposed approach is verified by the numerical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
自律发布了新的文献求助10
39秒前
脑洞疼应助wzy采纳,获得10
48秒前
比格大王应助clearlove采纳,获得10
51秒前
54秒前
wzy发布了新的文献求助10
1分钟前
悟空爱吃酥橙完成签到,获得积分10
1分钟前
1分钟前
自律完成签到,获得积分10
1分钟前
ma121完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
刺1656发布了新的文献求助10
2分钟前
2分钟前
jiangmi完成签到,获得积分10
2分钟前
Sene完成签到,获得积分10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
感动初蓝完成签到 ,获得积分10
4分钟前
橘橘橘子皮完成签到 ,获得积分10
4分钟前
4分钟前
蒙恩Maria发布了新的文献求助10
4分钟前
4分钟前
蒙恩Maria完成签到,获得积分10
4分钟前
Pattis完成签到 ,获得积分10
5分钟前
鲸鱼完成签到 ,获得积分10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
moaner完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
优秀的甜菜完成签到,获得积分10
6分钟前
zznzn发布了新的文献求助10
6分钟前
Hello应助zznzn采纳,获得10
6分钟前
橘笙发布了新的文献求助10
7分钟前
Ricardo完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443