Online Path Planning for AUV in Dynamic Ocean Scenarios: A Lightweight Neural Dynamics Network Approach

人工神经网络 计算机科学 动力学(音乐) 路径(计算) 运动规划 人工智能 计算机网络 机器人 物理 声学
作者
Song Han,Jiaao Zhao,Xinbin Li,Junzhi Yu,Shuili Wang,Zhixin Liu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3782-3795 被引量:4
标识
DOI:10.1109/tiv.2024.3356529
摘要

In this study, the online path planning problem for autonomous underwater vehicle, which is constrained by the limited hardware computation and energy-carrying capabilities, is studied under the interference of dynamic ocean currents. To address this issue, an online lightweight neural dynamics approach is proposed to plan paths with low time and energy consumption in ocean currents scenarios. Firstly, the lightweight rapid propagation neural dynamics network, which involves the low complexity structure and the rapid propagation mechanism, is constructed. The proposed low connection-computation complexity neural dynamics network structure can reduce the number of adjacent neurons and the computation of neural connection weights by the customized division. The proposed rapid propagation mechanism can enhance the propagation directionality to speed up the convergence of the neural dynamics network. Then, the fused-ocean-currents path-generation mechanism is proposed to fuse the local adjacent ocean currents information into the neural activity values to reconstruct the neural activity value gradient, which can timely reflect the low time and energy consumption paths. In this way, the relatively advantageous ocean currents can be fully utilized and the relatively adverse ocean currents can be actively avoided to efficiently save the navigational time and energy. Furthermore, the event-trigger-based path-screening mechanism is proposed to adaptively avoid detecting unnecessary ocean currents information, thereby reducing the detecting energy consumption. Finally, the superior performance of the proposed approach is verified by the numerical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平淡南霜完成签到,获得积分10
3秒前
搬砖的化学男完成签到 ,获得积分0
4秒前
nyfz2002完成签到,获得积分10
4秒前
阳光翩跹完成签到 ,获得积分10
4秒前
踏实愚志完成签到,获得积分10
5秒前
wang应助七七采纳,获得10
5秒前
浅香千雪发布了新的文献求助10
5秒前
完美的发卡完成签到,获得积分10
6秒前
大力的诗蕾完成签到 ,获得积分10
6秒前
75986686发布了新的文献求助10
6秒前
Moonquakes_完成签到 ,获得积分10
7秒前
7秒前
戚雅柔完成签到 ,获得积分10
7秒前
9秒前
10秒前
10秒前
ldy完成签到,获得积分10
10秒前
11秒前
12秒前
zq1992nl完成签到,获得积分10
12秒前
lixiniverson完成签到 ,获得积分10
13秒前
小钱钱完成签到,获得积分10
13秒前
14秒前
tangchao完成签到,获得积分10
14秒前
今后应助一二采纳,获得10
15秒前
Garry完成签到,获得积分10
15秒前
淡淡的若冰应助Tonald Yang采纳,获得10
15秒前
shuogesama完成签到,获得积分10
15秒前
陈里里完成签到 ,获得积分10
15秒前
苏钰发布了新的文献求助10
16秒前
正直幼枫发布了新的文献求助10
18秒前
勤奋鞋子完成签到,获得积分10
19秒前
欢呼采文完成签到,获得积分20
19秒前
小潘完成签到 ,获得积分10
20秒前
哎嘿应助冷傲迎梦采纳,获得10
20秒前
徐什么宝完成签到,获得积分10
21秒前
FYm完成签到,获得积分10
21秒前
myth完成签到,获得积分10
22秒前
飞鱼完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757