人工神经网络
计算机科学
动力学(音乐)
路径(计算)
运动规划
人工智能
计算机网络
机器人
物理
声学
作者
Song Han,Jiaao Zhao,Xinbin Li,Junzhi Yu,Shuili Wang,Zhixin Liu
出处
期刊:IEEE transactions on intelligent vehicles
[Institute of Electrical and Electronics Engineers]
日期:2024-01-22
卷期号:9 (2): 3782-3795
被引量:4
标识
DOI:10.1109/tiv.2024.3356529
摘要
In this study, the online path planning problem for autonomous underwater vehicle, which is constrained by the limited hardware computation and energy-carrying capabilities, is studied under the interference of dynamic ocean currents. To address this issue, an online lightweight neural dynamics approach is proposed to plan paths with low time and energy consumption in ocean currents scenarios. Firstly, the lightweight rapid propagation neural dynamics network, which involves the low complexity structure and the rapid propagation mechanism, is constructed. The proposed low connection-computation complexity neural dynamics network structure can reduce the number of adjacent neurons and the computation of neural connection weights by the customized division. The proposed rapid propagation mechanism can enhance the propagation directionality to speed up the convergence of the neural dynamics network. Then, the fused-ocean-currents path-generation mechanism is proposed to fuse the local adjacent ocean currents information into the neural activity values to reconstruct the neural activity value gradient, which can timely reflect the low time and energy consumption paths. In this way, the relatively advantageous ocean currents can be fully utilized and the relatively adverse ocean currents can be actively avoided to efficiently save the navigational time and energy. Furthermore, the event-trigger-based path-screening mechanism is proposed to adaptively avoid detecting unnecessary ocean currents information, thereby reducing the detecting energy consumption. Finally, the superior performance of the proposed approach is verified by the numerical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI