An efficient penalty function method for scenario-based uncertainty quantification problems

惩罚法 不确定度量化 计算机科学 功能(生物学) 数学优化 数学 机器学习 进化生物学 生物
作者
Haitao Liao,Wenhao Yuan,Ruxin Gao,Xujin Yuan
出处
期刊:Journal of Vibration and Control [SAGE]
标识
DOI:10.1177/10775463241228102
摘要

This paper proposes an efficient penalty function method to transform constrained optimization problems into unconstrained ones without introducing Lagrange multipliers or slack variables. The method designs new activation and loss penalty functions for inequality and equality functional models and establishes a non-Lagrangian-constrained optimization method. A novel optimality condition independent of any additional variables and equivalent to the Karush–Kuhn–Tucker (KKT) condition is introduced. Additionally, a scenario constraint handling method that does not rely on slack variables is proposed. Compared to soft constraint optimization methods, the proposed method can easily handle numerous scenario constraints. Two examples are used to compare the results with those in the literature, verifying the effectiveness and reliability of the proposed method. Finally, the method is applied to three scenario-based uncertainty quantification problems, including a trigonometric function affected by a noise term, the dynamic performance of a black-box system controller, and the frequency response of a damaged suspension arm. The results demonstrate that the proposed penalty function method can effectively solve scenario-based uncertainty quantification problems with many constraints and improve computational efficiency, providing a new method and means for addressing uncertainty quantification optimization problems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KYN完成签到,获得积分10
2秒前
2秒前
桐桐应助叶未晞yi采纳,获得10
2秒前
2秒前
su发布了新的文献求助10
3秒前
123456789完成签到,获得积分10
5秒前
炙热的如柏完成签到,获得积分20
5秒前
6秒前
7秒前
HWei完成签到,获得积分10
7秒前
Ryan完成签到,获得积分10
7秒前
8秒前
Jzhang应助丙队长采纳,获得10
10秒前
11秒前
GXY发布了新的文献求助30
12秒前
Lucas应助专注秋尽采纳,获得10
12秒前
12秒前
754完成签到,获得积分10
12秒前
15秒前
学习猴发布了新的文献求助10
15秒前
充电宝应助炙热的如柏采纳,获得10
16秒前
所所应助qzaima采纳,获得10
16秒前
米兰达完成签到 ,获得积分0
17秒前
xg发布了新的文献求助10
19秒前
Loooong应助Ni采纳,获得10
20秒前
20秒前
WZ0904发布了新的文献求助10
20秒前
顾矜应助博ge采纳,获得10
22秒前
22秒前
Lotus发布了新的文献求助10
23秒前
24秒前
仁爱仙人掌完成签到,获得积分10
26秒前
ywang发布了新的文献求助10
26秒前
28秒前
28秒前
28秒前
ewqw关注了科研通微信公众号
29秒前
曦小蕊完成签到 ,获得积分10
29秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824