Development of a machine learning-based model to predict hepatic inflammation in chronic hepatitis B patients with concurrent hepatic steatosis: a cohort study

医学 队列 脂肪变性 内科学 接收机工作特性 回顾性队列研究 胃肠病学 慢性肝炎 炎症 免疫学 病毒
作者
Fajuan Rui,Yee Hui Yeo,Liang Xu,Qi Zheng,Xiao–Ming Xu,Wenjing Ni,Youwen Tan,Qinglei Zeng,Zebao He,Xiaorong Tian,Qi Xue,Yuanwang Qiu,Chuanwu Zhu,Weimao Ding,Jian Wang,Rui Huang,Yayun Xu,Yunliang Chen,Junqing Fan,Zhiwen Fan
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:68: 102419-102419 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102419
摘要

Summary

Background

With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods

We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).

Findings

From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation

Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助清修采纳,获得10
刚刚
刚刚
刚刚
sevenhill应助科研通管家采纳,获得10
刚刚
Darsine完成签到,获得积分10
刚刚
小药童应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
见雨鱼完成签到 ,获得积分10
1秒前
小药童应助科研通管家采纳,获得10
1秒前
小药童应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
3244190850完成签到 ,获得积分10
2秒前
如约而至完成签到,获得积分10
3秒前
YB完成签到,获得积分20
3秒前
好学的泷泷完成签到 ,获得积分10
4秒前
解你所忧完成签到 ,获得积分10
5秒前
勤奋完成签到 ,获得积分10
5秒前
奋斗的石头完成签到,获得积分10
6秒前
发发旦旦完成签到,获得积分10
6秒前
修兮完成签到 ,获得积分10
7秒前
共享精神应助HanZhang采纳,获得10
8秒前
9秒前
chang完成签到 ,获得积分10
9秒前
起点完成签到,获得积分10
10秒前
学术Bond完成签到,获得积分10
10秒前
12秒前
橘子完成签到,获得积分10
12秒前
DiJia完成签到 ,获得积分10
13秒前
平常紫安完成签到 ,获得积分10
13秒前
LIJIngcan完成签到 ,获得积分10
14秒前
djdh完成签到 ,获得积分10
15秒前
Lee完成签到 ,获得积分10
15秒前
兔BF完成签到,获得积分10
15秒前
烂漫的蜡烛完成签到 ,获得积分10
16秒前
SciGPT应助蝈蝈采纳,获得10
16秒前
傲慢与偏见完成签到,获得积分10
18秒前
ywindm完成签到 ,获得积分10
19秒前
大气白翠完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861