Development of a machine learning-based model to predict hepatic inflammation in chronic hepatitis B patients with concurrent hepatic steatosis: a cohort study

医学 队列 脂肪变性 内科学 接收机工作特性 回顾性队列研究 胃肠病学 慢性肝炎 炎症 免疫学 病毒
作者
Fajuan Rui,Yee Hui Yeo,Liang Xu,Qi Zheng,Xiao–Ming Xu,Wenjing Ni,Youwen Tan,Qinglei Zeng,Zebao He,Xiaorong Tian,Qi Xue,Yuanwang Qiu,Chuanwu Zhu,Weimao Ding,Jian Wang,Rui Huang,Yayun Xu,Yunliang Chen,Junqing Fan,Zhiwen Fan
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:68: 102419-102419 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102419
摘要

Summary

Background

With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods

We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).

Findings

From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation

Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwart发布了新的文献求助10
刚刚
Cui完成签到,获得积分10
刚刚
Cherry发布了新的文献求助10
刚刚
wnx001111发布了新的文献求助10
刚刚
花开四海完成签到 ,获得积分10
1秒前
江江江发布了新的文献求助10
2秒前
KJ完成签到,获得积分10
2秒前
中将完成签到,获得积分10
3秒前
4秒前
苗玉发布了新的文献求助10
4秒前
4秒前
吴雪完成签到 ,获得积分10
5秒前
橘漓儿发布了新的文献求助10
5秒前
昏睡的妙梦完成签到,获得积分10
5秒前
8R60d8应助安慕希采纳,获得10
5秒前
萌~Lucky完成签到,获得积分10
5秒前
Zz完成签到 ,获得积分10
5秒前
zd发布了新的文献求助10
6秒前
6秒前
方正完成签到,获得积分10
6秒前
科研通AI6应助小薇采纳,获得10
6秒前
AUGS酒完成签到,获得积分10
6秒前
渭北完成签到,获得积分10
6秒前
aodilee完成签到,获得积分10
6秒前
风信子12344321完成签到,获得积分10
7秒前
7秒前
zyw完成签到,获得积分10
7秒前
qsw完成签到,获得积分10
7秒前
李WB发布了新的文献求助10
7秒前
cy完成签到 ,获得积分10
9秒前
赘婿应助SUN采纳,获得10
9秒前
叫我学弟完成签到 ,获得积分10
9秒前
swsx1317完成签到,获得积分10
9秒前
liz完成签到,获得积分10
9秒前
王司徒发布了新的文献求助10
9秒前
文静紫霜完成签到,获得积分10
10秒前
明眸发布了新的文献求助10
10秒前
菠萝发布了新的文献求助10
10秒前
田様应助西门如豹采纳,获得10
10秒前
XuanZhang完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392