Development of a machine learning-based model to predict hepatic inflammation in chronic hepatitis B patients with concurrent hepatic steatosis: a cohort study

医学 队列 脂肪变性 内科学 接收机工作特性 回顾性队列研究 胃肠病学 慢性肝炎 炎症 免疫学 病毒
作者
Fajuan Rui,Yee Hui Yeo,Liang Xu,Qi Zheng,Xiao–Ming Xu,Wenjing Ni,Youwen Tan,Qinglei Zeng,Zebao He,Xiaorong Tian,Qi Xue,Yuanwang Qiu,Chuanwu Zhu,Weimao Ding,Jian Wang,Rui Huang,Yayun Xu,Yunliang Chen,Junqing Fan,Zhiwen Fan
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:68: 102419-102419 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102419
摘要

Summary

Background

With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods

We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).

Findings

From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation

Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研阳完成签到,获得积分10
刚刚
刚刚
多看看发布了新的文献求助10
刚刚
lsn发布了新的文献求助10
1秒前
Owen应助四叶草采纳,获得10
2秒前
小池完成签到 ,获得积分10
3秒前
3秒前
无花果应助WNL采纳,获得10
3秒前
善学以致用应助HCT采纳,获得10
4秒前
思源应助雷雷采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
moyu37发布了新的文献求助10
6秒前
珍珠完成签到,获得积分10
6秒前
小郭发布了新的文献求助10
6秒前
浮浮世世应助kathy采纳,获得30
7秒前
7秒前
7秒前
7秒前
AJ完成签到,获得积分10
8秒前
默默莫莫完成签到 ,获得积分10
8秒前
ChaosTenet完成签到,获得积分10
9秒前
曾zzzz发布了新的文献求助10
9秒前
珍珠发布了新的文献求助10
10秒前
毛万良发布了新的文献求助30
11秒前
无敌咖啡豆完成签到,获得积分10
11秒前
kathy完成签到,获得积分10
11秒前
13秒前
土豪的含莲关注了科研通微信公众号
13秒前
高大的高大完成签到,获得积分20
13秒前
乐乐应助157295108采纳,获得10
14秒前
14秒前
oue完成签到,获得积分20
15秒前
飘逸问萍完成签到 ,获得积分10
15秒前
闪闪寒云完成签到 ,获得积分10
16秒前
16秒前
Lucas应助风清扬采纳,获得10
17秒前
CKY完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802