医学
队列
脂肪变性
内科学
接收机工作特性
回顾性队列研究
胃肠病学
慢性肝炎
炎症
免疫学
病毒
作者
Fajuan Rui,Yee Hui Yeo,Liang Xu,Qi Zheng,Xiao‐Ming Xu,Wenjing Ni,Youwen Tan,Qinglei Zeng,Zebao He,Xiaorong Tian,Qi Xue,Yuanwang Qiu,Chuanwu Zhu,Weimao Ding,Jian Wang,Rui Huang,Yayun Xu,Yunliang Chen,Junqing Fan,Zhiwen Fan,Xiaolong Qi,Daniel Q. Huang,Qing Xie,Junping Shi,Chao Wu,Jie Li
标识
DOI:10.1016/j.eclinm.2023.102419
摘要
Summary
Background
With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS. Methods
We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449). Findings
From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model. Interpretation
Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes. Funding
This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).