晶体孪晶
材料科学
可塑性
原子单位
Twip公司
马氏体
冶金
位错
部分位错
凝聚态物理
结晶学
复合材料
微观结构
物理
化学
量子力学
作者
Jun Chen,Song Lu,Ziyong Hou,Wen-wen Song,Zhenyu Liu,Guodong Wang,Tadashi Furuhara
出处
期刊:Acta Materialia
[Elsevier]
日期:2024-03-12
卷期号:271: 119832-119832
被引量:6
标识
DOI:10.1016/j.actamat.2024.119832
摘要
Twin intersections have been reported to significantly impact on macroscopic properties by relaxing localized stress concentration and accommodating strain. Here the atomic-scale structural characterization of the twin intersection region in a deformed high Mn twinning-induced plasticity (TWIP) steel was conducted using high-resolution transmission electron microscopy. Detailed microstructural features were revealed at the twin intersection region, including twin intersection rotation, low angle grain boundary and ε martensite. The twin intersections were observed to preserve the face-centered cubic structure, which exhibiting deviation angles of ∼0-15 o with respect to the barrier twin depending on the localized stress concentration. Interestingly, the ε-martensite was observed in the vicinity of the twin intersection, which shows a wedge shape, distinct from the usual plate-like deformation-induced martensite. Therefore, we identified here a novel stress relaxation mechanism at the twin intersection region. Based on the detailed microstructural characterization of the twin interaction region at the atomic scale, the fundamental dislocation mechanisms of twin transmission and interaction were discussed. The research thus advances the understanding of twin intersection rotation and ε-martensite transformation by twin-twin interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI