Correcting model misspecification in physics-informed neural networks (PINNs)

物理系统 计算机科学 人工神经网络 不确定度量化 复杂系统 代表(政治) 统计物理学 物理定律 计算模型 理论计算机科学 人工智能 机器学习 物理 量子力学 政治 政治学 法学
作者
Zongren Zou,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:505: 112918-112918 被引量:23
标识
DOI:10.1016/j.jcp.2024.112918
摘要

Data-driven discovery of governing equations in computational science has emerged as a new paradigm for obtaining accurate physical models and as a possible alternative to theoretical derivations. The recently developed physics-informed neural networks (PINNs) have also been employed to learn governing equations given data across diverse scientific disciplines, e.g., in biology and fluid dynamics. Despite the effectiveness of PINNs for discovering governing equations, the physical models encoded in PINNs may be misspecified in complex systems as some of the physical processes may not be fully understood, leading to the poor accuracy of PINN predictions. In this work, we present a general approach to correct the misspecified physical models in PINNs for discovering governing equations, given some sparse and/or noisy data. Specifically, we first encode the assumed physical models, which may be misspecified in PINNs, and then employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data. Due to the expressivity of DNNs, the proposed method is capable of reducing the computational errors caused by the model misspecification and thus enables the applications of PINNs in complex systems where the physical processes are not exactly known. Furthermore, we utilize the Bayesian physics-informed neural networks (B-PINNs) and/or ensemble PINNs to quantify uncertainties arising from noisy and/or gappy data in the discovered governing equations. A series of numerical examples including reaction-diffusion systems and non-Newtonian channel and cavity flows demonstrate that the added DNNs are capable of correcting the model misspecification in PINNs and thus reduce the discrepancy between the physical models encoded in PINNs and the observational data. In addition, the B-PINNs and ensemble PINNs can provide reasonable uncertainty bounds in the discovered physical models, which makes the predictions more reliable. We also demonstrate that we can seamlessly combine the present approach with the symbolic regression to obtain the explicit governing equations upon the training of PINNs. We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助ZH采纳,获得10
1秒前
Hello应助xiaoguangtou采纳,获得10
2秒前
LLLnna完成签到,获得积分10
2秒前
3秒前
Doc.Wang发布了新的文献求助10
4秒前
甘地发布了新的文献求助10
4秒前
乐观的小鸡完成签到 ,获得积分10
5秒前
Joyce关注了科研通微信公众号
5秒前
SciGPT应助侯侯采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
JamesPei应助01231009yrjz采纳,获得10
9秒前
尊敬的书萱完成签到,获得积分10
10秒前
大力世界完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
yyr发布了新的文献求助10
13秒前
Ting发布了新的文献求助10
13秒前
13秒前
二两白茶发布了新的文献求助10
14秒前
斯文败类应助kk采纳,获得10
14秒前
桐桐应助CCC采纳,获得10
16秒前
潘道士完成签到 ,获得积分10
16秒前
zhxq完成签到,获得积分10
16秒前
17秒前
忧郁的心锁完成签到,获得积分10
18秒前
wrr完成签到,获得积分10
18秒前
SYLH应助ssk采纳,获得10
18秒前
爆米花应助热心小松鼠采纳,获得10
18秒前
18秒前
星辰大海应助热心小松鼠采纳,获得10
18秒前
英姑应助热心小松鼠采纳,获得10
18秒前
酷波er应助热心小松鼠采纳,获得10
18秒前
科目三应助热心小松鼠采纳,获得10
18秒前
李爱国应助热心小松鼠采纳,获得10
18秒前
sjz发布了新的文献求助10
19秒前
科研通AI2S应助热心小松鼠采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432