Correcting model misspecification in physics-informed neural networks (PINNs)

物理系统 计算机科学 人工神经网络 不确定度量化 复杂系统 代表(政治) 统计物理学 物理定律 计算模型 理论计算机科学 人工智能 机器学习 物理 量子力学 政治 政治学 法学
作者
Zongren Zou,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:505: 112918-112918 被引量:15
标识
DOI:10.1016/j.jcp.2024.112918
摘要

Data-driven discovery of governing equations in computational science has emerged as a new paradigm for obtaining accurate physical models and as a possible alternative to theoretical derivations. The recently developed physics-informed neural networks (PINNs) have also been employed to learn governing equations given data across diverse scientific disciplines, e.g., in biology and fluid dynamics. Despite the effectiveness of PINNs for discovering governing equations, the physical models encoded in PINNs may be misspecified in complex systems as some of the physical processes may not be fully understood, leading to the poor accuracy of PINN predictions. In this work, we present a general approach to correct the misspecified physical models in PINNs for discovering governing equations, given some sparse and/or noisy data. Specifically, we first encode the assumed physical models, which may be misspecified in PINNs, and then employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data. Due to the expressivity of DNNs, the proposed method is capable of reducing the computational errors caused by the model misspecification and thus enables the applications of PINNs in complex systems where the physical processes are not exactly known. Furthermore, we utilize the Bayesian physics-informed neural networks (B-PINNs) and/or ensemble PINNs to quantify uncertainties arising from noisy and/or gappy data in the discovered governing equations. A series of numerical examples including reaction-diffusion systems and non-Newtonian channel and cavity flows demonstrate that the added DNNs are capable of correcting the model misspecification in PINNs and thus reduce the discrepancy between the physical models encoded in PINNs and the observational data. In addition, the B-PINNs and ensemble PINNs can provide reasonable uncertainty bounds in the discovered physical models, which makes the predictions more reliable. We also demonstrate that we can seamlessly combine the present approach with the symbolic regression to obtain the explicit governing equations upon the training of PINNs. We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与树常青发布了新的文献求助10
2秒前
3秒前
yue完成签到 ,获得积分10
3秒前
4秒前
科研通AI2S应助漂亮的念双采纳,获得10
5秒前
skbkbe发布了新的文献求助10
6秒前
6秒前
打打应助顺心灵寒采纳,获得10
7秒前
Gergeo应助危机的河马采纳,获得20
7秒前
8秒前
海潮发布了新的文献求助10
9秒前
郑志凡完成签到 ,获得积分10
9秒前
12秒前
FashionBoy应助射天狼采纳,获得10
13秒前
登山人发布了新的文献求助10
13秒前
无限毛豆发布了新的文献求助10
14秒前
宜醉宜游宜睡应助王算法采纳,获得10
15秒前
皮本皮发布了新的文献求助10
16秒前
punchline完成签到 ,获得积分10
17秒前
搜集达人应助张怀民采纳,获得10
18秒前
顺心灵寒发布了新的文献求助10
18秒前
科研通AI2S应助学呀学采纳,获得10
18秒前
研友_851KE8发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助自信寒蕾采纳,获得10
21秒前
威武鞅完成签到,获得积分10
23秒前
szk完成签到,获得积分10
24秒前
Jasper应助CY88采纳,获得10
26秒前
射天狼发布了新的文献求助10
26秒前
封迎松发布了新的文献求助200
26秒前
26秒前
会飞的鲸鱼完成签到 ,获得积分10
27秒前
666完成签到 ,获得积分10
29秒前
wshiyu完成签到 ,获得积分10
29秒前
30秒前
与树常青完成签到,获得积分10
30秒前
射天狼完成签到,获得积分20
31秒前
32秒前
英姑应助GF采纳,获得10
32秒前
登山人完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919