Correcting model misspecification in physics-informed neural networks (PINNs)

物理系统 计算机科学 人工神经网络 不确定度量化 复杂系统 代表(政治) 统计物理学 物理定律 计算模型 理论计算机科学 人工智能 机器学习 物理 政治 量子力学 法学 政治学
作者
Zongren Zou,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:505: 112918-112918 被引量:15
标识
DOI:10.1016/j.jcp.2024.112918
摘要

Data-driven discovery of governing equations in computational science has emerged as a new paradigm for obtaining accurate physical models and as a possible alternative to theoretical derivations. The recently developed physics-informed neural networks (PINNs) have also been employed to learn governing equations given data across diverse scientific disciplines, e.g., in biology and fluid dynamics. Despite the effectiveness of PINNs for discovering governing equations, the physical models encoded in PINNs may be misspecified in complex systems as some of the physical processes may not be fully understood, leading to the poor accuracy of PINN predictions. In this work, we present a general approach to correct the misspecified physical models in PINNs for discovering governing equations, given some sparse and/or noisy data. Specifically, we first encode the assumed physical models, which may be misspecified in PINNs, and then employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data. Due to the expressivity of DNNs, the proposed method is capable of reducing the computational errors caused by the model misspecification and thus enables the applications of PINNs in complex systems where the physical processes are not exactly known. Furthermore, we utilize the Bayesian physics-informed neural networks (B-PINNs) and/or ensemble PINNs to quantify uncertainties arising from noisy and/or gappy data in the discovered governing equations. A series of numerical examples including reaction-diffusion systems and non-Newtonian channel and cavity flows demonstrate that the added DNNs are capable of correcting the model misspecification in PINNs and thus reduce the discrepancy between the physical models encoded in PINNs and the observational data. In addition, the B-PINNs and ensemble PINNs can provide reasonable uncertainty bounds in the discovered physical models, which makes the predictions more reliable. We also demonstrate that we can seamlessly combine the present approach with the symbolic regression to obtain the explicit governing equations upon the training of PINNs. We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助鳗鱼丹琴采纳,获得30
刚刚
Ricewind完成签到,获得积分20
1秒前
1秒前
略晓薛完成签到 ,获得积分10
1秒前
聪明的书包完成签到 ,获得积分10
1秒前
中流击水完成签到,获得积分10
1秒前
饱满的翠阳完成签到 ,获得积分10
1秒前
细腻柜子发布了新的文献求助10
2秒前
在水一方应助grassroot采纳,获得10
2秒前
康舟发布了新的文献求助10
2秒前
爱洗澡的拖鞋完成签到 ,获得积分10
2秒前
roundround完成签到 ,获得积分10
2秒前
小思完成签到 ,获得积分10
2秒前
祖三问完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
leozhang完成签到,获得积分10
3秒前
坚强的广山应助学术疯子采纳,获得200
4秒前
xixixi完成签到 ,获得积分10
4秒前
腿腿完成签到 ,获得积分10
4秒前
选民很头疼完成签到,获得积分10
4秒前
MXX完成签到 ,获得积分10
4秒前
积极的雨完成签到 ,获得积分10
5秒前
跳跃豆芽完成签到 ,获得积分10
5秒前
jjb发布了新的文献求助10
5秒前
betyby完成签到 ,获得积分10
5秒前
Keven完成签到 ,获得积分10
5秒前
mang_er完成签到 ,获得积分10
5秒前
夜雨完成签到 ,获得积分10
5秒前
Ting完成签到 ,获得积分10
6秒前
小雨点完成签到 ,获得积分10
6秒前
张雨欣完成签到 ,获得积分10
6秒前
alice01987完成签到,获得积分10
7秒前
zzz完成签到,获得积分20
7秒前
炙热黄豆发布了新的文献求助10
7秒前
vv完成签到 ,获得积分10
7秒前
洁净山柏完成签到 ,获得积分10
7秒前
默默的如凡完成签到 ,获得积分10
7秒前
姜姜研完成签到 ,获得积分10
8秒前
Helen完成签到 ,获得积分10
8秒前
momo完成签到 ,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662173
求助须知:如何正确求助?哪些是违规求助? 3223026
关于积分的说明 9749872
捐赠科研通 2932763
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727