Correcting model misspecification in physics-informed neural networks (PINNs)

物理系统 计算机科学 人工神经网络 不确定度量化 复杂系统 代表(政治) 统计物理学 物理定律 计算模型 理论计算机科学 人工智能 机器学习 物理 政治 量子力学 法学 政治学
作者
Zongren Zou,Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:505: 112918-112918 被引量:23
标识
DOI:10.1016/j.jcp.2024.112918
摘要

Data-driven discovery of governing equations in computational science has emerged as a new paradigm for obtaining accurate physical models and as a possible alternative to theoretical derivations. The recently developed physics-informed neural networks (PINNs) have also been employed to learn governing equations given data across diverse scientific disciplines, e.g., in biology and fluid dynamics. Despite the effectiveness of PINNs for discovering governing equations, the physical models encoded in PINNs may be misspecified in complex systems as some of the physical processes may not be fully understood, leading to the poor accuracy of PINN predictions. In this work, we present a general approach to correct the misspecified physical models in PINNs for discovering governing equations, given some sparse and/or noisy data. Specifically, we first encode the assumed physical models, which may be misspecified in PINNs, and then employ other deep neural networks (DNNs) to model the discrepancy between the imperfect models and the observational data. Due to the expressivity of DNNs, the proposed method is capable of reducing the computational errors caused by the model misspecification and thus enables the applications of PINNs in complex systems where the physical processes are not exactly known. Furthermore, we utilize the Bayesian physics-informed neural networks (B-PINNs) and/or ensemble PINNs to quantify uncertainties arising from noisy and/or gappy data in the discovered governing equations. A series of numerical examples including reaction-diffusion systems and non-Newtonian channel and cavity flows demonstrate that the added DNNs are capable of correcting the model misspecification in PINNs and thus reduce the discrepancy between the physical models encoded in PINNs and the observational data. In addition, the B-PINNs and ensemble PINNs can provide reasonable uncertainty bounds in the discovered physical models, which makes the predictions more reliable. We also demonstrate that we can seamlessly combine the present approach with the symbolic regression to obtain the explicit governing equations upon the training of PINNs. We envision that the proposed approach will extend the applications of PINNs for discovering governing equations in problems where the physico-chemical or biological processes are not well understood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木佑完成签到,获得积分10
2秒前
Colo完成签到,获得积分10
3秒前
yuko完成签到 ,获得积分10
3秒前
通通真行完成签到,获得积分10
5秒前
5秒前
6秒前
眨眼完成签到,获得积分10
7秒前
LL完成签到 ,获得积分10
9秒前
黑糖珍珠完成签到 ,获得积分10
10秒前
10秒前
10秒前
CL发布了新的文献求助10
11秒前
欢喜的采梦完成签到,获得积分10
12秒前
唐诗阅完成签到,获得积分10
13秒前
14秒前
15秒前
勤劳平彤发布了新的文献求助10
15秒前
顾矜应助坚强的鸡翅采纳,获得10
16秒前
17秒前
慈祥的夜安应助通通真行采纳,获得10
17秒前
CL完成签到,获得积分10
19秒前
李y梅子发布了新的文献求助10
20秒前
21秒前
21秒前
三分糖完成签到,获得积分20
22秒前
林泉发布了新的文献求助30
23秒前
23秒前
24秒前
mengshang完成签到,获得积分10
26秒前
酷波er应助bb采纳,获得10
26秒前
PG完成签到,获得积分10
26秒前
李雪瑞发布了新的文献求助10
27秒前
传奇3应助KHZhang采纳,获得10
27秒前
上官若男应助KHZhang采纳,获得10
27秒前
Owen应助KHZhang采纳,获得10
27秒前
外向渊思完成签到 ,获得积分10
28秒前
hynni完成签到,获得积分10
28秒前
一条鱼叫弗里登完成签到 ,获得积分10
28秒前
三分糖发布了新的文献求助10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263