肿胀 的
油页岩
膨润土
化学工程
钻井液
热重分析
Zeta电位
共聚物
化学
材料科学
钻探
有机化学
纳米颗粒
地质学
工程类
古生物学
冶金
聚合物
作者
Xiaodong Bai,You Fan,Lin Wu,Moubo Wang,Yumei Luo
摘要
Abstract As oil reserves in shallow wells continue to deplete, the drilling industry must shift its focus toward extracting oil from deeper and more complex formations. Water‐based drilling fluid inhibitors are currently limited in their ability to withstand high temperatures. In the current work, for the first time, the application of 1‐vinyl‐3‐ethylimidazolium bromide salt‐allyl alcohol polyoxyethylene ether‐2‐acrylamide‐2‐methylpropanesulfonic acid (PIAA) as the shale inhibitor is reported. The incorporation of ionic liquids has made PIAA promising to be an effective shale inhibitor for high‐temperature‐tolerant water‐based drilling fluids. The high‐temperature resistance (300°C) of PIAA was verified through thermogravimetric test. Through mud ball, shale rolling recovery, and linear swelling experiments, we found that PIAA yielded the lowest swelling rate (27.3%) in the 24‐h linear swelling rate test, as compared to HMA‐15 (46.1%) and FA‐367 (31.2%). This confirmed the superior corrosion inhibition performance of PIAA. In addition, we investigated the inhibition mechanism using Zeta potential and other tests. Bentonite inhibition can be achieved through the coating of bentonite particles by PIAA, which effectively plugs shale pores, neutralizes negative charges on the surface of bentonite particles, and adsorbs them onto particle surfaces. Overall, PIAA has excellent high‐temperature resistance and inhibition properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI