Semi-Supervised Medical Image Segmentation Using Cross-Style Consistency With Shape-Aware and Local Context Constraints

计算机科学 过度拟合 分割 人工智能 一致性(知识库) 背景(考古学) 图像分割 机器学习 深度学习 编码(集合论) 网络体系结构 模式识别(心理学) 人工神经网络 古生物学 程序设计语言 集合(抽象数据类型) 生物 计算机安全
作者
Jinhua Liu,Christian Desrosiers,Dexin Yu,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1449-1461 被引量:11
标识
DOI:10.1109/tmi.2023.3338269
摘要

Despite the remarkable progress in semi-supervised medical image segmentation methods based on deep learning, their application to real-life clinical scenarios still faces considerable challenges. For example, insufficient labeled data often makes it difficult for networks to capture the complexity and variability of the anatomical regions to be segmented. To address these problems, we design a new semi-supervised segmentation framework that aspires to produce anatomically plausible predictions. Our framework comprises two parallel networks: shape-agnostic and shape-aware networks. These networks learn from each other, enabling effective utilization of unlabeled data. Our shape-aware network implicitly introduces shape guidance to capture shape fine-grained information. Meanwhile, shape-agnostic networks employ uncertainty estimation to further obtain reliable pseudo-labels for the counterpart. We also employ a cross-style consistency strategy to enhance the network's utilization of unlabeled data. It enriches the dataset to prevent overfitting and further eases the coupling of the two networks that learn from each other. Our proposed architecture also incorporates a novel loss term that facilitates the learning of the local context of segmentation by the network, thereby enhancing the overall accuracy of prediction. Experiments on three different datasets of medical images show that our method outperforms many excellent semi-supervised segmentation methods and outperforms them in perceiving shape. The code can be seen at https://github.com/igip-liu/SLC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈红安发布了新的文献求助30
1秒前
Akim应助gnil采纳,获得10
4秒前
科目三应助mixiaojunhhh采纳,获得10
5秒前
zhangyu应助酷炫元风采纳,获得10
7秒前
安徒发布了新的文献求助10
8秒前
9秒前
高高完成签到 ,获得积分10
14秒前
15秒前
甘博发布了新的文献求助10
15秒前
16秒前
Orange应助Cellchang采纳,获得10
16秒前
孙燕应助陈红安采纳,获得30
17秒前
刻苦的班完成签到,获得积分10
18秒前
18秒前
EASA完成签到,获得积分10
21秒前
JamesPei应助Woaimama724采纳,获得10
21秒前
21秒前
gnil发布了新的文献求助10
21秒前
欢呼伟祺完成签到,获得积分10
23秒前
24秒前
Sun发布了新的文献求助10
25秒前
柚子发布了新的文献求助10
27秒前
老实的石头完成签到,获得积分10
27秒前
feng完成签到,获得积分10
27秒前
29秒前
老程完成签到,获得积分10
30秒前
研友_VZG7GZ应助shine采纳,获得10
30秒前
34秒前
38秒前
RenS完成签到,获得积分10
40秒前
41秒前
wkjfh应助EASA采纳,获得10
41秒前
42秒前
thisnn发布了新的文献求助10
46秒前
AJ发布了新的文献求助10
46秒前
ay发布了新的文献求助20
46秒前
李莫凡关注了科研通微信公众号
49秒前
Rondab应助EASA采纳,获得10
51秒前
淡水痕完成签到,获得积分10
52秒前
Hello应助ay采纳,获得20
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644