Magnetotelluric Closed-Loop Inversion

反演(地质) 计算机科学 大地电磁法 合成数据 算法 非线性系统 反变换采样 人工神经网络 人工智能 电阻率和电导率 地质学 工程类 量子力学 电信 表面波 构造盆地 电气工程 物理 古生物学
作者
Zhuo Jia,Yonghao Wang,Yinshuo Li,Chenyang Xu,Xu Wang,Wenkai Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3335128
摘要

Magnetotelluric (MT) inversion constitutes a pivotal research domain within the purview of electromagnetic data interpretation, characterized by its inherent nonlinearity and illposed problem. Traditional MT inversion algorithms often require introducing an initial model as a prior constraint, and then drawing the electrical distribution of the structure based on the observed data, which has limitations such as low computational efficiency and high computational costs. This paper proposes an efficient and high-quality MT intelligent joint inversion method based on artificial intelligence (AI) control strategy to address the issues in MT inversion problems. Capitalizing on the strong nonlinear fitting capabilities of convolutional neural networks (CNNs), the closed-loop network composed of forward and inversion subnetworks is constructed to enable the closed-loop network to train in the absence of labels, thereby solving the restrictive problem of the small number of label samples faced by MT inversion. Simultaneously, the reciprocal constraint between forward and inversion subnetworks can suppress inversion multiplicity, leading to improved inversion accuracy. In addition, the uncertainty in inversion can be further reduced by mutual constraints between apparent resistivity and phase data. Finally, this paper tests and verifies the effectiveness of the closed-loop network using synthetic and measured data. The results demonstrate that the closed-loop network significantly enhances the depth resolution of inversion and elevates the reliability of inversion results. Moreover, the closed-loop network can also effectively predict the apparent resistivity and phase response data that are close to those simulated via the finite element method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助fang采纳,获得10
刚刚
刚刚
turquoise应助zzjl采纳,获得10
刚刚
糖糖糖唐完成签到,获得积分10
刚刚
孙福禄应助quan采纳,获得10
刚刚
小蘑菇应助黑化小狗采纳,获得10
1秒前
JamesPei应助忐忑的远山采纳,获得20
1秒前
端庄不斜完成签到,获得积分10
1秒前
2秒前
今后应助外向的新儿采纳,获得10
2秒前
小锤发布了新的文献求助10
2秒前
HanruiWang完成签到,获得积分10
2秒前
3秒前
bkagyin应助机灵的怀绿采纳,获得10
3秒前
meiwei完成签到,获得积分10
4秒前
hw20010926完成签到 ,获得积分10
4秒前
dtf完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
松松关注了科研通微信公众号
6秒前
6秒前
大胆的以冬完成签到,获得积分10
6秒前
大方的觅海完成签到,获得积分10
7秒前
只如初发布了新的文献求助10
7秒前
SYLH应助斯文火龙果采纳,获得10
7秒前
易安发布了新的文献求助10
7秒前
木桶人plus完成签到 ,获得积分10
7秒前
shino发布了新的文献求助10
8秒前
8秒前
学术z完成签到,获得积分10
9秒前
晓军完成签到,获得积分10
9秒前
研友_rLmNXn完成签到,获得积分10
9秒前
开朗的睫毛膏完成签到,获得积分10
9秒前
9秒前
10秒前
语黛完成签到,获得积分10
10秒前
完美世界应助enen采纳,获得10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650