亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Magnetotelluric Closed-Loop Inversion

反演(地质) 计算机科学 大地电磁法 合成数据 算法 非线性系统 反变换采样 人工神经网络 人工智能 电阻率和电导率 地质学 工程类 量子力学 电信 表面波 构造盆地 电气工程 物理 古生物学
作者
Zhuo Jia,Yonghao Wang,Yinshuo Li,Chenyang Xu,Xu Wang,Wenkai Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3335128
摘要

Magnetotelluric (MT) inversion constitutes a pivotal research domain within the purview of electromagnetic data interpretation, characterized by its inherent nonlinearity and illposed problem. Traditional MT inversion algorithms often require introducing an initial model as a prior constraint, and then drawing the electrical distribution of the structure based on the observed data, which has limitations such as low computational efficiency and high computational costs. This paper proposes an efficient and high-quality MT intelligent joint inversion method based on artificial intelligence (AI) control strategy to address the issues in MT inversion problems. Capitalizing on the strong nonlinear fitting capabilities of convolutional neural networks (CNNs), the closed-loop network composed of forward and inversion subnetworks is constructed to enable the closed-loop network to train in the absence of labels, thereby solving the restrictive problem of the small number of label samples faced by MT inversion. Simultaneously, the reciprocal constraint between forward and inversion subnetworks can suppress inversion multiplicity, leading to improved inversion accuracy. In addition, the uncertainty in inversion can be further reduced by mutual constraints between apparent resistivity and phase data. Finally, this paper tests and verifies the effectiveness of the closed-loop network using synthetic and measured data. The results demonstrate that the closed-loop network significantly enhances the depth resolution of inversion and elevates the reliability of inversion results. Moreover, the closed-loop network can also effectively predict the apparent resistivity and phase response data that are close to those simulated via the finite element method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然绝山发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
薛清棵发布了新的文献求助10
9秒前
9秒前
1分钟前
FEI发布了新的文献求助10
1分钟前
完美世界应助leslieo3o采纳,获得10
1分钟前
王雅完成签到 ,获得积分10
1分钟前
FEI完成签到,获得积分10
1分钟前
Yan应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
2分钟前
leslieo3o发布了新的文献求助10
2分钟前
科研通AI5应助薛清棵采纳,获得30
2分钟前
blenx完成签到,获得积分10
2分钟前
leslieo3o完成签到,获得积分10
3分钟前
星辰大海应助zyh采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Yan应助科研通管家采纳,获得30
4分钟前
Yan应助科研通管家采纳,获得10
4分钟前
Yan应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Yan应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
poser发布了新的文献求助30
4分钟前
嘻嘻完成签到,获得积分10
4分钟前
XPhosPdG3完成签到,获得积分10
4分钟前
poser完成签到,获得积分10
4分钟前
4分钟前
4分钟前
liu发布了新的文献求助10
4分钟前
run发布了新的文献求助10
4分钟前
原子超人完成签到,获得积分10
5分钟前
阿空完成签到 ,获得积分10
5分钟前
凉白开完成签到,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199203
求助须知:如何正确求助?哪些是违规求助? 4379903
关于积分的说明 13638654
捐赠科研通 4236243
什么是DOI,文献DOI怎么找? 2323953
邀请新用户注册赠送积分活动 1321950
关于科研通互助平台的介绍 1273201