Magnetotelluric closed-loop inversion

反演(地质) 计算机科学 大地电磁法 合成数据 算法 非线性系统 反变换采样 人工神经网络 人工智能 电阻率和电导率 地质学 工程类 量子力学 电信 表面波 构造盆地 电气工程 物理 古生物学
作者
Zhuo Jia,Yonghao Wang,Yinshuo Li,Chenyang Xu,Xu Wang,Wenkai Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11
标识
DOI:10.1109/tgrs.2023.3335128
摘要

Magnetotelluric (MT) inversion constitutes a pivotal research domain within the purview of electromagnetic data interpretation, characterized by its inherent nonlinearity and illposed problem. Traditional MT inversion algorithms often require introducing an initial model as a prior constraint, and then drawing the electrical distribution of the structure based on the observed data, which has limitations such as low computational efficiency and high computational costs. This paper proposes an efficient and high-quality MT intelligent joint inversion method based on artificial intelligence (AI) control strategy to address the issues in MT inversion problems. Capitalizing on the strong nonlinear fitting capabilities of convolutional neural networks (CNNs), the closed-loop network composed of forward and inversion subnetworks is constructed to enable the closed-loop network to train in the absence of labels, thereby solving the restrictive problem of the small number of label samples faced by MT inversion. Simultaneously, the reciprocal constraint between forward and inversion subnetworks can suppress inversion multiplicity, leading to improved inversion accuracy. In addition, the uncertainty in inversion can be further reduced by mutual constraints between apparent resistivity and phase data. Finally, this paper tests and verifies the effectiveness of the closed-loop network using synthetic and measured data. The results demonstrate that the closed-loop network significantly enhances the depth resolution of inversion and elevates the reliability of inversion results. Moreover, the closed-loop network can also effectively predict the apparent resistivity and phase response data that are close to those simulated via the finite element method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flypipidan完成签到,获得积分10
刚刚
WWXWWX发布了新的文献求助10
刚刚
LLL完成签到,获得积分20
2秒前
2秒前
Mingjun完成签到 ,获得积分10
2秒前
4554+发布了新的文献求助10
2秒前
3秒前
蔡菜菜发布了新的文献求助10
3秒前
3秒前
李爱国应助格格星采纳,获得10
3秒前
3秒前
4秒前
坚强亦丝应助py999采纳,获得10
5秒前
6秒前
谦让玲发布了新的文献求助10
6秒前
瘦瘦山灵完成签到,获得积分10
6秒前
buno完成签到,获得积分10
7秒前
冷静帅哥完成签到,获得积分10
8秒前
LLL发布了新的文献求助30
9秒前
Ava应助IAMXC采纳,获得10
9秒前
漂亮板栗完成签到,获得积分10
9秒前
10秒前
那英东完成签到 ,获得积分10
10秒前
fbbggb完成签到,获得积分20
10秒前
化尔为鸟其名为鹏完成签到 ,获得积分10
10秒前
59号关注了科研通微信公众号
10秒前
11秒前
照相机完成签到,获得积分10
11秒前
跳跃的寻菱完成签到,获得积分10
11秒前
研友_VZG7GZ应助威武的沂采纳,获得10
12秒前
lily_lin发布了新的文献求助10
13秒前
科研通AI2S应助论文通行者采纳,获得10
13秒前
斯文败类应助小宇采纳,获得10
13秒前
SciGPT应助小宇采纳,获得10
13秒前
慕青应助小宇采纳,获得10
13秒前
orixero应助小宇采纳,获得10
13秒前
深情安青应助小宇采纳,获得10
13秒前
wanci应助小宇采纳,获得10
13秒前
领导范儿应助小宇采纳,获得10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386