Magnetotelluric Closed-Loop Inversion

反演(地质) 计算机科学 大地电磁法 合成数据 算法 非线性系统 反变换采样 人工神经网络 人工智能 电阻率和电导率 地质学 工程类 量子力学 电信 表面波 构造盆地 电气工程 物理 古生物学
作者
Zhuo Jia,Yonghao Wang,Yinshuo Li,Chenyang Xu,Xu Wang,Wenkai Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:3
标识
DOI:10.1109/tgrs.2023.3335128
摘要

Magnetotelluric (MT) inversion constitutes a pivotal research domain within the purview of electromagnetic data interpretation, characterized by its inherent nonlinearity and illposed problem. Traditional MT inversion algorithms often require introducing an initial model as a prior constraint, and then drawing the electrical distribution of the structure based on the observed data, which has limitations such as low computational efficiency and high computational costs. This paper proposes an efficient and high-quality MT intelligent joint inversion method based on artificial intelligence (AI) control strategy to address the issues in MT inversion problems. Capitalizing on the strong nonlinear fitting capabilities of convolutional neural networks (CNNs), the closed-loop network composed of forward and inversion subnetworks is constructed to enable the closed-loop network to train in the absence of labels, thereby solving the restrictive problem of the small number of label samples faced by MT inversion. Simultaneously, the reciprocal constraint between forward and inversion subnetworks can suppress inversion multiplicity, leading to improved inversion accuracy. In addition, the uncertainty in inversion can be further reduced by mutual constraints between apparent resistivity and phase data. Finally, this paper tests and verifies the effectiveness of the closed-loop network using synthetic and measured data. The results demonstrate that the closed-loop network significantly enhances the depth resolution of inversion and elevates the reliability of inversion results. Moreover, the closed-loop network can also effectively predict the apparent resistivity and phase response data that are close to those simulated via the finite element method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
cheifly发布了新的文献求助10
1秒前
monned发布了新的文献求助10
1秒前
1210xi完成签到,获得积分10
2秒前
3秒前
现安完成签到,获得积分10
3秒前
Cc8完成签到,获得积分10
3秒前
3秒前
格非完成签到,获得积分0
3秒前
打打应助科研通管家采纳,获得10
3秒前
刘钱美子完成签到,获得积分10
3秒前
3秒前
深情安青应助科研通管家采纳,获得50
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
axiba完成签到,获得积分10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
虚拟的冰香完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
gjw应助科研通管家采纳,获得10
4秒前
gjw应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414070
求助须知:如何正确求助?哪些是违规求助? 4531003
关于积分的说明 14126139
捐赠科研通 4446247
什么是DOI,文献DOI怎么找? 2439384
邀请新用户注册赠送积分活动 1431483
关于科研通互助平台的介绍 1409185