Deep Learning in Single-cell Analysis

深度学习 机器学习 管道(软件) 数据科学 领域(数学) 计算机科学 人工智能 数学 纯数学 程序设计语言
作者
Dylan Molho,Jiayuan Ding,Wenzhuo Tang,Zhaoheng Li,Hongzhi Wen,Yixin Wang,Julian Venegas,Wei Jin,Renming Liu,Runze Su,Patrick Danaher,Robert Yang,Yu L. Lei,Yuying Xie,Jiliang Tang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (3): 1-62 被引量:6
标识
DOI:10.1145/3641284
摘要

Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high dimensional, sparse, and heterogeneous and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智雁凡完成签到,获得积分10
1秒前
Cheung2121发布了新的文献求助30
2秒前
3秒前
5秒前
谜记完成签到,获得积分10
5秒前
共享精神应助Cheung2121采纳,获得30
5秒前
光撒盐完成签到,获得积分10
6秒前
cowboy007完成签到,获得积分10
6秒前
张振宇完成签到 ,获得积分10
7秒前
zz发布了新的文献求助10
8秒前
zzq778发布了新的文献求助10
10秒前
黄怡婷完成签到 ,获得积分10
10秒前
Daisy应助科研通管家采纳,获得10
11秒前
机智苗应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
yanmu2010应助科研通管家采纳,获得10
11秒前
kingwill应助科研通管家采纳,获得20
12秒前
银包铜应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
Orange应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
Lucas完成签到,获得积分10
14秒前
C胖胖完成签到,获得积分10
14秒前
舒心的完成签到,获得积分10
14秒前
zz完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
17秒前
luozejun完成签到,获得积分10
17秒前
ycp完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029