Range current retrieval fromsentinel-1 SAR ocean product based on deep learning

航程(航空) 电流(流体) 深度学习 产品(数学) 深海 计算机科学 遥感 地质学 环境科学 人工智能 海洋学 航空航天工程 工程类 几何学 数学
作者
Weizeng Shao,Yuhang Zhou,Yuyi Hu,Yan Li,Yashi Zhou,Qingjun Zhang
出处
期刊:Remote Sensing Letters [Informa]
卷期号:15 (2): 145-156 被引量:2
标识
DOI:10.1080/2150704x.2024.2305176
摘要

In this study, the feasibility of current retrieval from Sentinel-1 (S-1) synthetic aperture radar (SAR) in the radar look/range direction is investigated. S-1 Ocean (OCN) products acquired in interferometric wide (IW) mode in the regions with the western boundary current, i.e., the western Pacific and western Atlantic, are collected for the period from 2020 to 2022, which are collocated with the current field from HYbrid Coordinate Ocean Model (HYCOM). The OCN wind, HYCOM current, and Stokes drift estimated from the OCN wave parameters are geometric projected to be the range direction. In addition, the Doppler centroid anomaly (DCA) is estimated using the difference between the radar return Doppler frequency and the predicted Doppler shift, which are derived from the OCN products. The dependences of the upper ocean dynamics in the range direction on the DCA are studied, and it is found that the range Stokes drift, wind speed, and current speed are linearly related to the DCA. Based on deep learning, denoted as multi-layer perceptron, a range current retrieval algorithm from the OCN product is developed using two-thirds of the collocated dataset, and the root mean square error (RMSE) of the range current speed converges to 0.15 ms−1. In particular, the wave-induced surface Stokes drift is considered in the process. Comparison of one-third of the dataset yields an RMSE of 0.14 ms−1 for the range current speed, a correlation coefficient (r) of 0.85, and a bias of −0.001 ms−1. Validation against several moored buoys shows an RMSE of 0.12 ms−1 with a r of 0.74 and a bias of −0.01 ms−1. Under this circumstance, it is believed that the algorithm used in this study is applicable for range current retrieval from the S-1 OCN product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
1秒前
斯文钢笔完成签到 ,获得积分10
2秒前
Hh发布了新的文献求助10
3秒前
司马天寿发布了新的文献求助10
4秒前
上官若男应助lio采纳,获得10
4秒前
wsnice应助呼呼采纳,获得20
6秒前
科研通AI5应助善良的路灯采纳,获得10
6秒前
8秒前
司马天寿完成签到,获得积分20
10秒前
10秒前
汤圆完成签到,获得积分10
11秒前
bitahu发布了新的文献求助10
11秒前
希望天下0贩的0应助lixm采纳,获得10
11秒前
科研通AI2S应助敦敦采纳,获得10
12秒前
13秒前
_呱_应助楼台杏花琴弦采纳,获得50
14秒前
咸鱼一号发布了新的文献求助10
14秒前
正经俠发布了新的文献求助10
14秒前
李志远完成签到,获得积分10
15秒前
ghh发布了新的文献求助10
15秒前
16秒前
77paocai完成签到,获得积分10
17秒前
CCL完成签到,获得积分10
18秒前
明亮的绫完成签到 ,获得积分10
18秒前
祖诗云完成签到,获得积分0
19秒前
jiewen发布了新的文献求助10
21秒前
21秒前
Oz完成签到,获得积分10
21秒前
zhukun发布了新的文献求助10
22秒前
22秒前
25秒前
香蕉觅云应助oliver501采纳,获得10
25秒前
正经俠完成签到 ,获得积分20
26秒前
YY完成签到 ,获得积分10
27秒前
清秀灵薇发布了新的文献求助10
27秒前
LZL完成签到 ,获得积分10
27秒前
油焖青椒完成签到,获得积分10
27秒前
不会学术的羊完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849