Range current retrieval fromsentinel-1 SAR ocean product based on deep learning

航程(航空) 电流(流体) 深度学习 产品(数学) 深海 计算机科学 遥感 地质学 环境科学 人工智能 海洋学 航空航天工程 工程类 几何学 数学
作者
Weizeng Shao,Yuhang Zhou,Yuyi Hu,Yan Li,Yashi Zhou,Qingjun Zhang
出处
期刊:Remote Sensing Letters [Informa]
卷期号:15 (2): 145-156 被引量:2
标识
DOI:10.1080/2150704x.2024.2305176
摘要

In this study, the feasibility of current retrieval from Sentinel-1 (S-1) synthetic aperture radar (SAR) in the radar look/range direction is investigated. S-1 Ocean (OCN) products acquired in interferometric wide (IW) mode in the regions with the western boundary current, i.e., the western Pacific and western Atlantic, are collected for the period from 2020 to 2022, which are collocated with the current field from HYbrid Coordinate Ocean Model (HYCOM). The OCN wind, HYCOM current, and Stokes drift estimated from the OCN wave parameters are geometric projected to be the range direction. In addition, the Doppler centroid anomaly (DCA) is estimated using the difference between the radar return Doppler frequency and the predicted Doppler shift, which are derived from the OCN products. The dependences of the upper ocean dynamics in the range direction on the DCA are studied, and it is found that the range Stokes drift, wind speed, and current speed are linearly related to the DCA. Based on deep learning, denoted as multi-layer perceptron, a range current retrieval algorithm from the OCN product is developed using two-thirds of the collocated dataset, and the root mean square error (RMSE) of the range current speed converges to 0.15 ms−1. In particular, the wave-induced surface Stokes drift is considered in the process. Comparison of one-third of the dataset yields an RMSE of 0.14 ms−1 for the range current speed, a correlation coefficient (r) of 0.85, and a bias of −0.001 ms−1. Validation against several moored buoys shows an RMSE of 0.12 ms−1 with a r of 0.74 and a bias of −0.01 ms−1. Under this circumstance, it is believed that the algorithm used in this study is applicable for range current retrieval from the S-1 OCN product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aldehyde应助illiterate采纳,获得10
刚刚
1秒前
李大爷完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
竹筏过海应助科研通管家采纳,获得30
1秒前
几酌应助科研通管家采纳,获得10
2秒前
whatever应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
好困应助科研通管家采纳,获得20
2秒前
Owen应助科研通管家采纳,获得30
2秒前
几酌应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
2秒前
whatever应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
晓湫发布了新的文献求助10
3秒前
皇甫藏鸟发布了新的文献求助10
3秒前
zj完成签到,获得积分10
4秒前
桃桃淘完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
qiaobaqiao完成签到 ,获得积分10
5秒前
spring完成签到 ,获得积分10
6秒前
李大龙发布了新的文献求助10
6秒前
7秒前
elfff发布了新的文献求助10
7秒前
8秒前
辣辣发布了新的文献求助20
8秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012