Range current retrieval fromsentinel-1 SAR ocean product based on deep learning

航程(航空) 电流(流体) 深度学习 产品(数学) 深海 计算机科学 遥感 地质学 环境科学 人工智能 海洋学 航空航天工程 工程类 几何学 数学
作者
Weizeng Shao,Yuhang Zhou,Yuyi Hu,Yan Li,Yashi Zhou,Qingjun Zhang
出处
期刊:Remote Sensing Letters [Taylor & Francis]
卷期号:15 (2): 145-156 被引量:2
标识
DOI:10.1080/2150704x.2024.2305176
摘要

In this study, the feasibility of current retrieval from Sentinel-1 (S-1) synthetic aperture radar (SAR) in the radar look/range direction is investigated. S-1 Ocean (OCN) products acquired in interferometric wide (IW) mode in the regions with the western boundary current, i.e., the western Pacific and western Atlantic, are collected for the period from 2020 to 2022, which are collocated with the current field from HYbrid Coordinate Ocean Model (HYCOM). The OCN wind, HYCOM current, and Stokes drift estimated from the OCN wave parameters are geometric projected to be the range direction. In addition, the Doppler centroid anomaly (DCA) is estimated using the difference between the radar return Doppler frequency and the predicted Doppler shift, which are derived from the OCN products. The dependences of the upper ocean dynamics in the range direction on the DCA are studied, and it is found that the range Stokes drift, wind speed, and current speed are linearly related to the DCA. Based on deep learning, denoted as multi-layer perceptron, a range current retrieval algorithm from the OCN product is developed using two-thirds of the collocated dataset, and the root mean square error (RMSE) of the range current speed converges to 0.15 ms−1. In particular, the wave-induced surface Stokes drift is considered in the process. Comparison of one-third of the dataset yields an RMSE of 0.14 ms−1 for the range current speed, a correlation coefficient (r) of 0.85, and a bias of −0.001 ms−1. Validation against several moored buoys shows an RMSE of 0.12 ms−1 with a r of 0.74 and a bias of −0.01 ms−1. Under this circumstance, it is believed that the algorithm used in this study is applicable for range current retrieval from the S-1 OCN product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助xueer采纳,获得10
1秒前
许子健发布了新的文献求助10
2秒前
3秒前
核桃发布了新的文献求助10
3秒前
清爽笑翠完成签到 ,获得积分10
3秒前
56jhjl完成签到,获得积分10
3秒前
大旭完成签到 ,获得积分10
4秒前
4秒前
opbillows发布了新的文献求助10
5秒前
Yolo发布了新的文献求助10
8秒前
8秒前
天天快乐应助健忘的若风采纳,获得10
9秒前
SYLH应助jiulin采纳,获得10
10秒前
10秒前
彩色的无声完成签到,获得积分20
11秒前
TTT完成签到,获得积分10
11秒前
clever关注了科研通微信公众号
12秒前
许子健发布了新的文献求助10
12秒前
13秒前
墨墨完成签到,获得积分10
15秒前
16秒前
17秒前
善学以致用应助咿咿呀呀采纳,获得30
17秒前
汉堡包应助Yolo采纳,获得10
17秒前
17秒前
念姬发布了新的文献求助10
20秒前
刘敏小七完成签到,获得积分10
20秒前
20秒前
慕青应助T拐拐采纳,获得10
21秒前
22秒前
22秒前
饺子完成签到,获得积分10
22秒前
Gao发布了新的文献求助10
23秒前
核桃发布了新的文献求助10
26秒前
像个小蛤蟆完成签到 ,获得积分10
27秒前
orixero应助博修采纳,获得10
27秒前
28秒前
咿咿呀呀发布了新的文献求助30
29秒前
Macaco完成签到,获得积分10
30秒前
qweqwe完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388