蜂蜡
蜡
吸附
材料科学
化学工程
三聚氰胺
自愈
生物炭
傅里叶变换红外光谱
表面改性
复合材料
有机化学
化学
医学
替代医学
病理
热解
工程类
作者
Kai Hu,Honghong Lyu,Haonan Duan,Zhenzhong Hu,Boxiong Shen
标识
DOI:10.1016/j.jhazmat.2024.133489
摘要
Oil spills are sudden, complex, and long-term hazardous, and the existing adsorption materials still have the disadvantages of small selective adsorption capacity, easy secondary contamination, and difficult to repair after breakage in practical applications. Herein, melamine foam (MF) coated by ball milled biochar (BMBC) and natural beeswax (Wax@BMBC@MF) was prepared by a bio-inspired functionalization method and further added with self-healing function (SH-Wax@BMBC@MF) to cope with complex environments, and applied to oil-water separation for oil adsorption. SEM and FTIR results showed that BMBC and natural beeswax nanoparticles successfully encapsulated the smooth surface of the melamine foam skeleton. The loading of natural beeswax increased the foam's ability to absorb oil and organic solvents from 0.6108-1.134 g to 0.850-1.391 g, and the oil-absorbing capacity of the foam remained at 0. 758-1.263 g after being cut by a knife and self-healing. The oil-absorbing capacity of SH-Wax@BMBC@MF remained in the range of 0.936-1.336 g under acid/alkali environment (pH =1-13). The surface functional groups of BMBC improved the surface roughness of the material and strengthen the MF skeleton to adsorb oils and organic solvents by capillary action. The generation of the di-coordinated structure by Fe
科研通智能强力驱动
Strongly Powered by AbleSci AI