自动汇总
计算机科学
前提
软件部署
背景(考古学)
自然语言处理
多文档摘要
人工智能
情报检索
语言学
生物
软件工程
古生物学
哲学
作者
Ishrat Ahmed,Yu Zhou,Nikhita Sharma,Jordan Hosier
出处
期刊:Lecture notes in networks and systems
日期:2024-01-01
卷期号:: 542-551
标识
DOI:10.1007/978-3-031-47721-8_36
摘要
While text summarization of transcripts in call centers is needed for detailed analysis, it presents challenges stemming from the call itself (context switching among speakers, cross talk, etc.) and from the resulting transcript (ASR transcription errors). This work aims to develop a summarization model suitable for on-premise deployment at call centers by fine-tuning pre-trained open-source large language models, assisted with reference summaries generated by GPT-3. The results are analyzed using ROUGE and human evaluation scores, and the correlation of these two metrics is examined. A fine-tuned BART model outputs satisfactory summaries with a human evaluation score of 6.95, approaching the GPT-3 score of 7.69.
科研通智能强力驱动
Strongly Powered by AbleSci AI