已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SPMHand: Segmentation-guided Progressive Multi-path 3D Hand Pose and Shape Estimation

计算机科学 人工智能 分割 姿势 计算机视觉 块(置换群论) 特征(语言学) 过程(计算) 图像分割 对象(语法) 模式识别(心理学) 路径(计算) 数学 几何学 哲学 操作系统 程序设计语言 语言学
作者
Haofan Lu,Shuiping Gou,Ruimin Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tmm.2024.3355652
摘要

Hand pose and shape estimation plays an important role in numerous applications. A cost-effective and practical-friendly approach is to perform accurate hand estimation from a single RGB image, but this task is challenging due to ubiquitous hand self-occlusion and hand-object interaction occlusions. In this paper, we propose a novel SPMHand network to alleviate the effect of occlusions, inspired by the process that humans infer the whole hand when the hand is occluded. The proposed SPMHand consists of two main modules to generate hand segmentations as guidance and conduct hand regressions in a progressive multi-path manner. The segmentation-guided deocclusion module enables the network to “see” the occluded hand by inferring the whole hand segmentation. Specifically, the visible hand segmentation is first obtained and then a hand morphology attention block is introduced to infer the whole hand segmentation by fusing the visible information with the learned hand features. The progressive multi-path regression module is designed to gradually regress the fine hand with intermediate supervisions. Features from deep to shallow are utilized for the hand regressions from coarse to decent. Subsequently, the structure feature, joint heatmaps and segmentations that provide guidance for deocclusion are embedded and fused for the final fine hand regression. Experiments on four challenging datasets illustrate that the proposed SPMHand outperforms the state-of-the-arts in both real-world and synthetic scenes, especially in the present of severe hand-object occlusions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助十一苗采纳,获得10
1秒前
3秒前
椒盐完成签到,获得积分10
4秒前
搜集达人应助shinn采纳,获得10
5秒前
忧虑的羊完成签到 ,获得积分10
5秒前
WTQ完成签到,获得积分10
6秒前
7秒前
7秒前
SciGPT应助善良语风采纳,获得10
10秒前
NexusExplorer应助Ricky采纳,获得10
11秒前
十一苗发布了新的文献求助10
13秒前
14秒前
东方秦兰发布了新的文献求助10
15秒前
19秒前
19秒前
斯佳丽奥哈拉给斯佳丽奥哈拉的求助进行了留言
20秒前
20秒前
科研通AI2S应助淡定的半梦采纳,获得10
22秒前
科研通AI5应助kelvin采纳,获得80
22秒前
24秒前
wanci应助墨倾池采纳,获得10
24秒前
26秒前
shinn发布了新的文献求助10
26秒前
长安完成签到 ,获得积分10
31秒前
陈海东发布了新的文献求助30
31秒前
优翎发布了新的文献求助10
31秒前
33秒前
香蕉觅云应助ukgiuhilo采纳,获得10
34秒前
35秒前
JamesPei应助shinn采纳,获得10
36秒前
Lucas应助苹果秋灵采纳,获得10
38秒前
啦啦啦完成签到,获得积分10
38秒前
科研小越完成签到,获得积分10
38秒前
yxy303256651发布了新的文献求助10
39秒前
科研通AI5应助08ji72采纳,获得10
42秒前
42秒前
墨倾池发布了新的文献求助10
42秒前
周美言完成签到,获得积分10
42秒前
46秒前
Ggap1完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610