Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance

胶质母细胞瘤 生物 卷积神经网络 肿瘤科 病理 计算生物学 癌症研究 医学 人工智能 计算机科学
作者
Min Yuan,Haolun Ding,Bangwei Guo,Miaomiao Yang,Yaning Yang,Steven Xu
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8) 被引量:1
标识
DOI:10.1200/cci.23.00154
摘要

PURPOSE To apply deep learning algorithms to histopathology images, construct image-based subtypes independent of known clinical and molecular classifications for glioblastoma, and produce novel insights into molecular and immune characteristics of the glioblastoma tumor microenvironment. MATERIALS AND METHODS Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features. Biclustering was used to identify subtypes and image feature modules. Prognostic value of image subtypes was assessed via Cox regression on survival outcomes and validated with 189 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set. Morphological, molecular, and immune characteristics of glioblastoma image subtypes were analyzed. RESULTS Four distinct subtypes and modules (imClust1-4) were identified for the TCGA patients with glioblastoma on the basis of the image feature data. The glioblastoma image subtypes were significantly associated with overall survival (OS; P = .028) and progression-free survival ( P = .003). Apparent association was also observed for disease-specific survival ( P = .096). imClust2 had the best prognosis for all three survival end points (eg, after 25 months, imClust2 had >7% surviving patients than the other subtypes). Examination of OS in the external validation using the unseen CPTAC data set showed consistent patterns. Multivariable Cox analyses confirmed that the image subtypes carry unique prognostic information independent of known clinical and molecular predictors. Molecular and immune profiling revealed distinct immune compositions of the tumor microenvironment in different image subtypes and may provide biologic explanations for the patterns in patients' outcomes. CONCLUSION Our image-based subtype classification on the basis of deep learning models is a novel tool to refine risk stratification in cancers. The image subtypes detected for glioblastoma represent a promising prognostic biomarker with distinct molecular and immune characteristics and may facilitate developing novel, individualized immunotherapies for glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小陈关注了科研通微信公众号
刚刚
Lucas应助自由灵雁采纳,获得10
1秒前
吃饭睡觉打豆豆完成签到,获得积分20
1秒前
sound完成签到,获得积分10
2秒前
showitt完成签到,获得积分10
2秒前
女巫Q完成签到,获得积分10
3秒前
maggiexjl完成签到,获得积分10
3秒前
星辰大海应助敬你的沉默采纳,获得10
4秒前
清脆的土豆应助whh采纳,获得10
4秒前
Fan发布了新的文献求助10
5秒前
tjnusq发布了新的文献求助10
5秒前
务实天德完成签到,获得积分10
5秒前
哈比人linling完成签到,获得积分10
5秒前
5秒前
zzc关闭了zzc文献求助
6秒前
称心奇迹完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
赘婿应助开心正能量采纳,获得30
9秒前
9秒前
在水一方应助西南雪豹采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
大模型应助舒心健柏采纳,获得10
10秒前
风趣访卉发布了新的文献求助10
10秒前
11秒前
12秒前
Owen应助sun采纳,获得10
12秒前
13秒前
Orange应助pb采纳,获得10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675