已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance

胶质母细胞瘤 生物 卷积神经网络 肿瘤科 病理 计算生物学 癌症研究 医学 人工智能 计算机科学
作者
Min Yuan,Haolun Ding,Bangwei Guo,Miaomiao Yang,Yaning Yang,Steven Xu
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:2
标识
DOI:10.1200/cci.23.00154
摘要

PURPOSE To apply deep learning algorithms to histopathology images, construct image-based subtypes independent of known clinical and molecular classifications for glioblastoma, and produce novel insights into molecular and immune characteristics of the glioblastoma tumor microenvironment. MATERIALS AND METHODS Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features. Biclustering was used to identify subtypes and image feature modules. Prognostic value of image subtypes was assessed via Cox regression on survival outcomes and validated with 189 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set. Morphological, molecular, and immune characteristics of glioblastoma image subtypes were analyzed. RESULTS Four distinct subtypes and modules (imClust1-4) were identified for the TCGA patients with glioblastoma on the basis of the image feature data. The glioblastoma image subtypes were significantly associated with overall survival (OS; P = .028) and progression-free survival ( P = .003). Apparent association was also observed for disease-specific survival ( P = .096). imClust2 had the best prognosis for all three survival end points (eg, after 25 months, imClust2 had >7% surviving patients than the other subtypes). Examination of OS in the external validation using the unseen CPTAC data set showed consistent patterns. Multivariable Cox analyses confirmed that the image subtypes carry unique prognostic information independent of known clinical and molecular predictors. Molecular and immune profiling revealed distinct immune compositions of the tumor microenvironment in different image subtypes and may provide biologic explanations for the patterns in patients' outcomes. CONCLUSION Our image-based subtype classification on the basis of deep learning models is a novel tool to refine risk stratification in cancers. The image subtypes detected for glioblastoma represent a promising prognostic biomarker with distinct molecular and immune characteristics and may facilitate developing novel, individualized immunotherapies for glioblastoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助echoyao采纳,获得10
2秒前
想不出来完成签到 ,获得积分10
7秒前
9秒前
10秒前
13秒前
卡诺斯明完成签到 ,获得积分10
15秒前
15秒前
平淡雅阳发布了新的文献求助30
15秒前
Shade发布了新的文献求助10
20秒前
WHsE完成签到 ,获得积分10
20秒前
李西瓜完成签到 ,获得积分10
22秒前
23秒前
24秒前
临床小白完成签到,获得积分10
27秒前
27秒前
临床小白发布了新的文献求助10
29秒前
小乐发布了新的文献求助30
30秒前
耍酷谷秋发布了新的文献求助10
31秒前
好运来完成签到 ,获得积分10
32秒前
YueLongZ完成签到,获得积分10
35秒前
czz014完成签到,获得积分10
36秒前
Shade发布了新的文献求助10
38秒前
小乐完成签到,获得积分10
41秒前
44秒前
小羊完成签到,获得积分10
49秒前
梁梁完成签到 ,获得积分10
49秒前
小凯完成签到 ,获得积分10
49秒前
牛太虚完成签到,获得积分10
50秒前
Eddy完成签到,获得积分10
51秒前
hhhhuo完成签到,获得积分10
54秒前
40873完成签到 ,获得积分10
54秒前
牛太虚发布了新的文献求助10
56秒前
59秒前
青铜发布了新的文献求助10
1分钟前
pphu完成签到,获得积分10
1分钟前
1分钟前
包破茧完成签到,获得积分10
1分钟前
背水完成签到 ,获得积分10
1分钟前
可久斯基完成签到 ,获得积分10
1分钟前
李健应助Shade采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610383
求助须知:如何正确求助?哪些是违规求助? 4016346
关于积分的说明 12434974
捐赠科研通 3697897
什么是DOI,文献DOI怎么找? 2039102
邀请新用户注册赠送积分活动 1071999
科研通“疑难数据库(出版商)”最低求助积分说明 955640