Graph Convolutional Network Based Multi-Objective Meta-Deep Q-Learning for Eco-Routing

符号 图形 布线(电子设计自动化) 卷积神经网络 计算机科学 人工智能 理论计算机科学 数学 计算机网络 算术
作者
Ma Xin,Yuanchang Xie,Chunxiao Chigan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tits.2023.3348034
摘要

Route selection can greatly affect vehicle fuel consumption and emissions. Finding the most fuel/energy-efficient route is known as the eco-routing problem. Existing eco-routing solutions do not effectively consider the critical traffic signal information and rely on fuel consumption models that may not be sufficiently accurate. To address the eco-routing problem in a signalized traffic network, this paper proposes a graph convolutional network based multi-objective meta-deep Q-learning (GM $^{\bm{2}}$ DQL) method. The problem is formulated as dynamic multi-objective Markov decision processes (MOMDP) and is tackled through deep reinforcement learning and meta-learning. We identify that graph convolutional network (GCN) is an efficient and suitable feature representation for a signalized traffic network. GM $^{\bm{2}}$ DQL can explore the optimal routes with respect to drivers’ different preferences on saving fuel and travel time. Through GM $^{\bm{2}}$ DQL, the agent is trained under a series of learning environments that are characterized by historical vehicle trajectories, fuel consumption data, and traffic signal data in the remote data center. The vehicle requesting eco-routing service can download the model that represents the action value function of the historical dynamic driving conditions. The model in the vehicle can quickly adapt to the most recent driving condition through online one-shot learning and predict the optimal eco-routes for the subsequent unseen driving conditions of the signalized traffic network. Extensive proof-of-concept experiments validate that GM $^{\bm{2}}$ DQL can effectively discover optimal eco-routes. It saves up to 71% travel time and 62% fuel, compared to the conventional shortest-path routing strategy that is widely used in navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
old杜完成签到,获得积分10
1秒前
科研通AI2S应助满意的短靴采纳,获得10
1秒前
bobo完成签到,获得积分10
3秒前
烟花应助任性凤凰采纳,获得10
3秒前
打打应助阿涂采纳,获得10
3秒前
少夫人发布了新的文献求助50
4秒前
XiaoZe完成签到,获得积分20
4秒前
小乔完成签到,获得积分10
4秒前
充电宝应助矮小的猎豹采纳,获得10
5秒前
cc完成签到 ,获得积分10
5秒前
上官若男应助XIA采纳,获得10
5秒前
ikun发布了新的文献求助10
6秒前
古术新知完成签到 ,获得积分10
6秒前
yijian发布了新的文献求助20
6秒前
白潇潇完成签到 ,获得积分10
6秒前
今后应助科研通管家采纳,获得10
7秒前
Rainbow完成签到,获得积分10
7秒前
xzy998应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
GPTea应助科研通管家采纳,获得150
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
王旋完成签到,获得积分10
8秒前
8秒前
思芋奶糕完成签到,获得积分10
9秒前
10秒前
11秒前
思芋奶糕发布了新的文献求助10
11秒前
cdhuang发布了新的文献求助10
11秒前
ooa4321发布了新的文献求助10
14秒前
落落完成签到,获得积分10
16秒前
16秒前
Tzzl0226发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532