Graph Convolutional Network Based Multi-Objective Meta-Deep Q-Learning for Eco-Routing

符号 图形 布线(电子设计自动化) 卷积神经网络 计算机科学 人工智能 理论计算机科学 数学 计算机网络 算术
作者
Ma Xin,Yuanchang Xie,Chunxiao Chigan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tits.2023.3348034
摘要

Route selection can greatly affect vehicle fuel consumption and emissions. Finding the most fuel/energy-efficient route is known as the eco-routing problem. Existing eco-routing solutions do not effectively consider the critical traffic signal information and rely on fuel consumption models that may not be sufficiently accurate. To address the eco-routing problem in a signalized traffic network, this paper proposes a graph convolutional network based multi-objective meta-deep Q-learning (GM $^{\bm{2}}$ DQL) method. The problem is formulated as dynamic multi-objective Markov decision processes (MOMDP) and is tackled through deep reinforcement learning and meta-learning. We identify that graph convolutional network (GCN) is an efficient and suitable feature representation for a signalized traffic network. GM $^{\bm{2}}$ DQL can explore the optimal routes with respect to drivers’ different preferences on saving fuel and travel time. Through GM $^{\bm{2}}$ DQL, the agent is trained under a series of learning environments that are characterized by historical vehicle trajectories, fuel consumption data, and traffic signal data in the remote data center. The vehicle requesting eco-routing service can download the model that represents the action value function of the historical dynamic driving conditions. The model in the vehicle can quickly adapt to the most recent driving condition through online one-shot learning and predict the optimal eco-routes for the subsequent unseen driving conditions of the signalized traffic network. Extensive proof-of-concept experiments validate that GM $^{\bm{2}}$ DQL can effectively discover optimal eco-routes. It saves up to 71% travel time and 62% fuel, compared to the conventional shortest-path routing strategy that is widely used in navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野性的冬日完成签到,获得积分10
刚刚
1秒前
1秒前
修辛发布了新的文献求助10
2秒前
羊蛋儿完成签到,获得积分10
2秒前
congenialboy发布了新的文献求助30
3秒前
4秒前
羊蛋儿发布了新的文献求助10
5秒前
5秒前
6秒前
zhq发布了新的文献求助10
6秒前
情怀应助Ayuyu采纳,获得10
8秒前
8秒前
YJ888发布了新的文献求助10
9秒前
王紫青完成签到,获得积分10
9秒前
672发布了新的文献求助10
10秒前
Agq完成签到,获得积分10
11秒前
彭于晏应助学术菜鸡123采纳,获得30
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
ding应助fei采纳,获得10
14秒前
落叶完成签到,获得积分10
15秒前
yydragen应助可爱无招采纳,获得50
16秒前
slx发布了新的文献求助10
17秒前
科研通AI2S应助机智的水风采纳,获得10
17秒前
叮当发布了新的文献求助10
17秒前
haha发布了新的文献求助50
19秒前
孙燕应助keyun采纳,获得10
20秒前
hjy完成签到 ,获得积分10
21秒前
CipherSage应助落叶采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176