Graph Convolutional Network Based Multi-Objective Meta-Deep Q-Learning for Eco-Routing

符号 图形 布线(电子设计自动化) 卷积神经网络 计算机科学 人工智能 理论计算机科学 数学 计算机网络 算术
作者
Ma Xin,Yuanchang Xie,Chunxiao Chigan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tits.2023.3348034
摘要

Route selection can greatly affect vehicle fuel consumption and emissions. Finding the most fuel/energy-efficient route is known as the eco-routing problem. Existing eco-routing solutions do not effectively consider the critical traffic signal information and rely on fuel consumption models that may not be sufficiently accurate. To address the eco-routing problem in a signalized traffic network, this paper proposes a graph convolutional network based multi-objective meta-deep Q-learning (GM $^{\bm{2}}$ DQL) method. The problem is formulated as dynamic multi-objective Markov decision processes (MOMDP) and is tackled through deep reinforcement learning and meta-learning. We identify that graph convolutional network (GCN) is an efficient and suitable feature representation for a signalized traffic network. GM $^{\bm{2}}$ DQL can explore the optimal routes with respect to drivers’ different preferences on saving fuel and travel time. Through GM $^{\bm{2}}$ DQL, the agent is trained under a series of learning environments that are characterized by historical vehicle trajectories, fuel consumption data, and traffic signal data in the remote data center. The vehicle requesting eco-routing service can download the model that represents the action value function of the historical dynamic driving conditions. The model in the vehicle can quickly adapt to the most recent driving condition through online one-shot learning and predict the optimal eco-routes for the subsequent unseen driving conditions of the signalized traffic network. Extensive proof-of-concept experiments validate that GM $^{\bm{2}}$ DQL can effectively discover optimal eco-routes. It saves up to 71% travel time and 62% fuel, compared to the conventional shortest-path routing strategy that is widely used in navigation systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吭吭菜菜完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
小二郎应助搞笑有毅力采纳,获得10
2秒前
文艺宛海发布了新的文献求助10
3秒前
YG完成签到,获得积分10
3秒前
迷人的问蕊完成签到,获得积分10
3秒前
郭志晟发布了新的文献求助10
3秒前
香菜碗里来完成签到,获得积分10
4秒前
Linn_Z发布了新的文献求助30
4秒前
李健应助大胆诗云采纳,获得10
4秒前
yan完成签到,获得积分10
4秒前
5秒前
5秒前
鲜艳的沛春完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
专注的问寒应助小猫宝采纳,获得50
8秒前
8秒前
zxd发布了新的文献求助10
8秒前
离离发布了新的文献求助10
9秒前
Orange应助不爱看文献采纳,获得10
9秒前
一米阳光发布了新的文献求助10
10秒前
世安完成签到,获得积分10
11秒前
11秒前
zzz发布了新的文献求助10
12秒前
丝绒发布了新的文献求助10
12秒前
无情的函发布了新的文献求助10
13秒前
dm发布了新的文献求助10
15秒前
15秒前
15秒前
berg发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578