Graph Convolutional Network Based Multi-Objective Meta-Deep Q-Learning for Eco-Routing

符号 图形 布线(电子设计自动化) 卷积神经网络 计算机科学 人工智能 理论计算机科学 数学 计算机网络 算术
作者
Ma Xin,Yuanchang Xie,Chunxiao Chigan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tits.2023.3348034
摘要

Route selection can greatly affect vehicle fuel consumption and emissions. Finding the most fuel/energy-efficient route is known as the eco-routing problem. Existing eco-routing solutions do not effectively consider the critical traffic signal information and rely on fuel consumption models that may not be sufficiently accurate. To address the eco-routing problem in a signalized traffic network, this paper proposes a graph convolutional network based multi-objective meta-deep Q-learning (GM $^{\bm{2}}$ DQL) method. The problem is formulated as dynamic multi-objective Markov decision processes (MOMDP) and is tackled through deep reinforcement learning and meta-learning. We identify that graph convolutional network (GCN) is an efficient and suitable feature representation for a signalized traffic network. GM $^{\bm{2}}$ DQL can explore the optimal routes with respect to drivers’ different preferences on saving fuel and travel time. Through GM $^{\bm{2}}$ DQL, the agent is trained under a series of learning environments that are characterized by historical vehicle trajectories, fuel consumption data, and traffic signal data in the remote data center. The vehicle requesting eco-routing service can download the model that represents the action value function of the historical dynamic driving conditions. The model in the vehicle can quickly adapt to the most recent driving condition through online one-shot learning and predict the optimal eco-routes for the subsequent unseen driving conditions of the signalized traffic network. Extensive proof-of-concept experiments validate that GM $^{\bm{2}}$ DQL can effectively discover optimal eco-routes. It saves up to 71% travel time and 62% fuel, compared to the conventional shortest-path routing strategy that is widely used in navigation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoming发布了新的文献求助10
刚刚
没有昵称完成签到,获得积分10
1秒前
tough_cookie完成签到 ,获得积分10
1秒前
Zhang发布了新的文献求助10
2秒前
Owen应助心仔采纳,获得10
2秒前
粗心小熊猫完成签到,获得积分10
2秒前
3秒前
研究牲完成签到,获得积分10
3秒前
thchiang完成签到 ,获得积分10
3秒前
人间忽晚完成签到,获得积分10
4秒前
方赫然应助PGlshuai789采纳,获得10
4秒前
栀盎完成签到 ,获得积分10
4秒前
潘榆完成签到,获得积分10
4秒前
DRX发布了新的文献求助10
4秒前
5秒前
初遇之时最暖完成签到,获得积分10
6秒前
6秒前
小蘑菇应助sunrase采纳,获得10
6秒前
6秒前
7秒前
aniannn完成签到,获得积分10
7秒前
宋锦发布了新的文献求助30
7秒前
微弱de胖头完成签到,获得积分20
7秒前
7秒前
550关闭了550文献求助
8秒前
英姑应助小奶球采纳,获得10
8秒前
林家小弟发布了新的文献求助10
8秒前
周女士完成签到,获得积分10
9秒前
菠萝吹雪发布了新的文献求助10
9秒前
9秒前
多发文章完成签到,获得积分10
9秒前
10秒前
10秒前
xxqaq发布了新的文献求助10
10秒前
Joe发布了新的文献求助10
10秒前
wwt完成签到,获得积分20
10秒前
10秒前
Bioflying完成签到,获得积分10
11秒前
mhl11应助jue123采纳,获得10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397