Performance optimization of high-K pocket hetero-dielectric TFET using improved geometry design

电介质 几何学 材料科学 光电子学 数学
作者
Abdelrahman Elshamy,Ahmed Shaker,Yasmine Elogail,Marwa S. Salem,Mona El Sabbagh
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:91: 30-38 被引量:6
标识
DOI:10.1016/j.aej.2024.01.072
摘要

This study explores the optimization of a hetero-dielectric tunnel field-effect transistor (HDTFET) structure to improve device performance. By incorporating a high-k oxide pocket in a portion of the source-side gate insulator, a local minimum in the conduction band edge is induced at the source-channel interface. This technique leads to improved tunneling rates and increased current handling capability. The simulation analysis focuses on optimizing the position and dimension of the high-k dielectric pocket to enhance key device characterization metrics such as ON-state current (ION), ON-to-OFF-state current ratio (ION/IOFF), subthreshold swing (SS), and cutoff frequency (fT). The resulting optimized design for a 30 nm-channel length involves a pocket shift of 1 nm and a pocket length of 12 nm. This configuration achieves a remarkable ON current of 55 µA/µm, which is 30 times higher than that of a conventional TFET. Importantly, other analog performance parameters remain unaffected, with fT surpassing 175 GHz for the 30 nm-channel. Additionally, transient analysis is conducted by applying a resistive load inverter circuit to a pulse input. The fall propagation delay (tphl) exhibits a greater than two orders of magnitude enhancement, along with improved overshoot voltage (VP) compared to a TFET without a pocket. The study further explores the impact of supply scaling on transient parameters. Optimal pocket scalability concerning channel length is found to be 40% for pocket length and approximately 2.5% for pocket shift relative to the source-channel interface. The proposed design significantly enhances DC and analog as well as circuit-level metrics compared to the traditional uniform gate oxide TFET.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cetomacrogol完成签到,获得积分10
2秒前
十月发布了新的文献求助10
3秒前
腼腆的冬瓜完成签到,获得积分10
3秒前
ding应助无耻之徒eleven采纳,获得10
5秒前
6秒前
6秒前
杀出个黎明举报求助违规成功
7秒前
稳重的若雁举报求助违规成功
7秒前
Singularity举报求助违规成功
7秒前
7秒前
畅快访蕊发布了新的文献求助10
8秒前
8秒前
李健应助阿甘采纳,获得10
8秒前
9秒前
9秒前
端庄谷南完成签到 ,获得积分10
9秒前
yangting发布了新的文献求助10
9秒前
汤襄发布了新的文献求助20
11秒前
默默柚子发布了新的文献求助10
11秒前
11秒前
NIKO发布了新的文献求助10
12秒前
田様应助常常采纳,获得10
12秒前
科目三应助第七班采纳,获得10
13秒前
云宇发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
Sofia完成签到 ,获得积分10
14秒前
香蕉觅云应助Sunny采纳,获得10
14秒前
田様应助清脆的萍采纳,获得10
15秒前
nn应助十月采纳,获得10
15秒前
15秒前
苒苒完成签到,获得积分10
16秒前
所所应助专注土豆采纳,获得10
16秒前
liuuuuuu应助南宫古伦采纳,获得10
16秒前
介于两石之间完成签到,获得积分10
17秒前
兔兔发布了新的文献求助10
18秒前
读书的女人最美丽完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489