Optimizing Prediction of Liver Disease Using Machine Learning Algorithms

计算机科学 机器学习 人工智能 算法
作者
Rachna,Tanish Jain,Deepak Shandilya,Shivangi Gagneja
标识
DOI:10.1002/9781394175376.ch10
摘要

On the right side of the abdomen, directly behind the ribs, is an organ called the liver, located just under the ribs on the right side of the stomach. It is essential for the body's detoxification process and the digestion of meals. Viruses, drinking alcohol, and being overweight can all cause liver disorders. The consequences of liver disorders vary based on the root cause of liver problems and can get worse if not diagnosed early. Based on symptoms, including yellowing of the skin and eyes, abdominal discomfort and swelling, and dark urine color. Researchers use machine learning to help them identify and categorize liver problems. Yet, missing values in medical data may lead to imbalanced study conclusions and make it challenging to forecast and assess the data. Therefore, to increase prediction accuracy and reduce overfitting, employ an algorithm like random forest, which utilizes averaging several decision tree classifiers to different attributes of the liver disorder dataset. The overall performance was improved to 73.3% after multiple simulations and the input of inconsistencies. As a result, this approach could be used to identify illnesses using more detailed clinical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAGA发布了新的文献求助10
2秒前
深情安青应助时尚的雨筠采纳,获得10
2秒前
4秒前
康康发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助150
5秒前
SciGPT应助取个名儿吧采纳,获得10
6秒前
7秒前
脑洞疼应助拼搏映菡采纳,获得10
9秒前
慕青应助杨榆藤采纳,获得10
10秒前
南望发布了新的文献求助10
11秒前
tiantian发布了新的文献求助30
12秒前
12秒前
优秀的排球完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助HarUkii采纳,获得10
14秒前
17秒前
17秒前
17秒前
19秒前
FashionBoy应助tiantian采纳,获得10
22秒前
23秒前
23秒前
24秒前
24秒前
haoduoyu发布了新的文献求助10
25秒前
崔佳鑫完成签到 ,获得积分10
25秒前
清爽老九发布了新的文献求助30
26秒前
12应助雪白的菲鹰采纳,获得100
27秒前
量子星尘发布了新的文献求助150
27秒前
小二郎应助天天看文献采纳,获得10
27秒前
luo发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
28秒前
29秒前
顾矜应助郑林采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908674
求助须知:如何正确求助?哪些是违规求助? 4185234
关于积分的说明 12997210
捐赠科研通 3952090
什么是DOI,文献DOI怎么找? 2167277
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092322