光合作用
胡杨
反转运蛋白
生物化学
生物
盐度
酶
核糖核酸
细胞生物学
植物
化学
基因
生态学
膜
作者
Jing Li,Rui Zhao,Jian Liu,Jun Yao,Siyuan Ma,Kexin Yin,Ying Zhang,Zhe Liu,Caixia Yan,Nan Zhao,Xiaoyang Zhou,Shaoliang Chen
摘要
The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba ‘717-1B4’ (P. × canescens) increased its salt sensitivity, which was reflected in the plant’s growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI