Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助霍健霏采纳,获得10
1秒前
善学以致用应助cy采纳,获得10
3秒前
迟暮发布了新的文献求助10
6秒前
yi发布了新的文献求助10
7秒前
Triumph完成签到,获得积分10
8秒前
黎咩e茹完成签到,获得积分10
8秒前
10秒前
10秒前
TingtingGZ发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
不二发布了新的文献求助10
15秒前
16秒前
青山见秋完成签到,获得积分10
16秒前
16秒前
ZJH完成签到,获得积分10
17秒前
治神守气完成签到,获得积分10
18秒前
18秒前
sujingbo发布了新的文献求助10
18秒前
19秒前
Ww完成签到 ,获得积分10
19秒前
20秒前
周涨杰发布了新的文献求助10
20秒前
ymjssg应助lizhiyuan采纳,获得10
21秒前
ZJH发布了新的文献求助10
21秒前
Hello应助三岁采纳,获得10
23秒前
23秒前
治神守气发布了新的文献求助10
24秒前
苦艾发布了新的文献求助10
24秒前
华仔应助怎么办采纳,获得10
24秒前
心情完成签到 ,获得积分10
26秒前
上官若男应助青山见秋采纳,获得10
26秒前
浮游应助啾v咪采纳,获得10
28秒前
iL发布了新的文献求助10
28秒前
28秒前
lizhiyuan完成签到,获得积分20
29秒前
30秒前
雪松完成签到 ,获得积分10
30秒前
汐风发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457832
求助须知:如何正确求助?哪些是违规求助? 4564070
关于积分的说明 14293379
捐赠科研通 4488847
什么是DOI,文献DOI怎么找? 2458760
邀请新用户注册赠送积分活动 1448671
关于科研通互助平台的介绍 1424355