Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SuperYing发布了新的文献求助10
刚刚
烟花应助风中元瑶采纳,获得10
刚刚
刚刚
Hello应助李联洪采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
zz发布了新的文献求助10
1秒前
昏睡的蟠桃应助豆豆采纳,获得30
1秒前
哈哈哈哈哈完成签到,获得积分10
1秒前
1秒前
2秒前
852应助wsd采纳,获得10
3秒前
念心发布了新的文献求助10
3秒前
优雅盼海发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
Kkkkkk发布了新的文献求助10
6秒前
zishan发布了新的文献求助20
7秒前
lllyf发布了新的文献求助10
7秒前
侧耳倾听发布了新的文献求助10
7秒前
寒冷的寒梦完成签到,获得积分10
7秒前
蕾蕾完成签到,获得积分10
7秒前
zzmyyds发布了新的文献求助10
8秒前
8秒前
8秒前
asqw完成签到,获得积分10
9秒前
YMH发布了新的文献求助10
10秒前
zzer发布了新的文献求助10
10秒前
tang123完成签到,获得积分10
10秒前
3d54s2完成签到,获得积分10
10秒前
小青椒应助潇洒的依凝采纳,获得30
10秒前
李海翔完成签到,获得积分10
11秒前
13秒前
99giddens发布了新的文献求助100
13秒前
13秒前
烤肠应助闪闪的熠彤采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531988
求助须知:如何正确求助?哪些是违规求助? 4620728
关于积分的说明 14574699
捐赠科研通 4560496
什么是DOI,文献DOI怎么找? 2498874
邀请新用户注册赠送积分活动 1478787
关于科研通互助平台的介绍 1450096