Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小茶发布了新的文献求助10
刚刚
刚刚
1秒前
大熊发布了新的文献求助10
1秒前
cmdan完成签到,获得积分10
2秒前
2秒前
情怀应助大豆终结者采纳,获得10
2秒前
nn发布了新的文献求助10
3秒前
3秒前
3秒前
Tting完成签到 ,获得积分10
3秒前
CC给CC的求助进行了留言
4秒前
4秒前
4秒前
4秒前
nini完成签到,获得积分20
5秒前
共享精神应助小小橙采纳,获得10
6秒前
DDD完成签到 ,获得积分10
6秒前
6秒前
酷波er应助挖井的人采纳,获得10
6秒前
所所应助朝朝采纳,获得10
6秒前
脑洞疼应助漂亮的念双采纳,获得10
7秒前
7秒前
yu完成签到,获得积分10
7秒前
ACCEPT发布了新的文献求助10
7秒前
CodeCraft应助helicase采纳,获得30
7秒前
姜姜姜姜完成签到,获得积分20
7秒前
科研小董发布了新的文献求助30
8秒前
Akim应助鱼鱼宇采纳,获得10
9秒前
1234发布了新的文献求助10
9秒前
ss发布了新的文献求助10
9秒前
10秒前
善学以致用应助666采纳,获得10
11秒前
宋博文完成签到,获得积分10
12秒前
欢喜怀绿完成签到,获得积分10
13秒前
14秒前
14秒前
共享精神应助smldx采纳,获得10
14秒前
Always完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961