Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingfuhao发布了新的文献求助10
刚刚
无辜群众完成签到,获得积分10
1秒前
Mic应助kkr采纳,获得30
1秒前
5秒前
充电宝应助白河采纳,获得10
7秒前
7秒前
爱我别肘完成签到,获得积分10
8秒前
8秒前
木子完成签到 ,获得积分10
9秒前
11秒前
11秒前
hui完成签到,获得积分10
11秒前
咸鱼完成签到,获得积分10
11秒前
12秒前
Jasper应助jingfuhao采纳,获得10
13秒前
闪电侠完成签到 ,获得积分10
13秒前
14秒前
曾经曼香完成签到,获得积分10
14秒前
14秒前
五虎完成签到,获得积分10
14秒前
14秒前
大个应助琪琪琪琪采纳,获得10
16秒前
hhh完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
珊啊是珊珊啊完成签到 ,获得积分10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
大个应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得30
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
20秒前
所所应助贝利亚采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
TYMY应助科研通管家采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424329
求助须知:如何正确求助?哪些是违规求助? 4538701
关于积分的说明 14163322
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304