Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
lu完成签到 ,获得积分10
1秒前
可乐不要加班完成签到,获得积分10
2秒前
王健芬发布了新的文献求助10
3秒前
3秒前
cc发布了新的文献求助10
4秒前
4秒前
大模型应助南浔采纳,获得10
5秒前
yy发布了新的文献求助10
6秒前
QiaoFish完成签到,获得积分10
7秒前
7秒前
Sweeney发布了新的文献求助10
8秒前
唯为完成签到,获得积分10
9秒前
10秒前
11秒前
13秒前
14秒前
南斋帝完成签到,获得积分10
14秒前
14秒前
PPP完成签到,获得积分10
15秒前
今天不晚饭吃完成签到,获得积分10
15秒前
唐tang发布了新的文献求助10
15秒前
16秒前
16秒前
阳大哥发布了新的文献求助10
16秒前
Benjamin发布了新的文献求助10
17秒前
19秒前
徐炎发布了新的文献求助10
19秒前
阳光的涵菡发布了新的文献求助100
20秒前
20秒前
万能图书馆应助Sweeney采纳,获得30
20秒前
21秒前
24秒前
徐炎完成签到,获得积分10
25秒前
25秒前
wiken发布了新的文献求助30
25秒前
匪石发布了新的文献求助10
26秒前
把拼好的饭给你完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962