Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FL完成签到,获得积分10
刚刚
CXC完成签到,获得积分10
1秒前
1秒前
魔幻嚓茶完成签到,获得积分10
1秒前
1秒前
wakkkkk完成签到,获得积分10
1秒前
共享精神应助赤足先森采纳,获得10
1秒前
彪壮的机器猫完成签到 ,获得积分10
1秒前
qiaoj2006完成签到,获得积分10
2秒前
rym完成签到 ,获得积分10
2秒前
2秒前
dyd完成签到,获得积分10
2秒前
心灵美的魂幽完成签到 ,获得积分10
3秒前
桃花不换酒完成签到,获得积分10
3秒前
王忘汪完成签到 ,获得积分10
3秒前
asdsfz发布了新的文献求助10
4秒前
4秒前
5秒前
酷炫雁梅发布了新的文献求助10
5秒前
叶液发布了新的文献求助30
5秒前
6秒前
Hello应助Hephestus采纳,获得10
6秒前
奋斗冬萱完成签到,获得积分10
6秒前
jimmyzzz应助cara采纳,获得20
6秒前
MissXia完成签到,获得积分10
6秒前
6秒前
theinu发布了新的文献求助10
7秒前
翟擎苍发布了新的文献求助10
7秒前
7秒前
小镇的废物完成签到,获得积分10
7秒前
Singularity应助安详可燕采纳,获得10
8秒前
慕青应助安详可燕采纳,获得10
8秒前
阳光c完成签到 ,获得积分10
8秒前
爆米花完成签到,获得积分10
9秒前
9秒前
clay_park完成签到,获得积分10
10秒前
牛贝贝完成签到,获得积分10
10秒前
高兴的夜天完成签到,获得积分10
10秒前
11秒前
bbh完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479