Computer Vision-Based Cybersecurity Threat Detection System with GAN-Enhanced Data Augmentation

计算机科学 计算机安全 领域(数学) 分类 功能(生物学) 光学(聚焦) 班级(哲学) 二元分类 人工智能 机器学习 支持向量机 数据库 生物 光学 物理 进化生物学 纯数学 数学
作者
Prateek Ranka,Ayush Shah,Nivan Vora,Aditya Kulkarni,Nilesh Patil
出处
期刊:Communications in computer and information science 卷期号:: 54-67 被引量:2
标识
DOI:10.1007/978-3-031-53728-8_5
摘要

The importance of establishing a strong and resilient cybersecurity threat detection system has become increasingly evident. In recent years, a multitude of methodologies have been developed to identify and mitigate security problems within computer networks. This study presents a novel methodology for categorizing security risks and effectively tackling these obstacles. Through the utilization of computer vision, network traffic data is converted into visual depictions, facilitating the discernment between secure traffic and possibly malevolent endeavors aimed at infiltrating a network. Furthermore, the integration of a Generative Adversarial Network (GAN) assumes a crucial function in enhancing data and reducing bias in the classification procedure. The focus of this study is around two critical classification components: binary classification, which involves deciding whether a given traffic instance is classified as safe or malicious, and multi-class classification, which involves identifying the specific sort of attack if the instance is truly classified as an attack. By utilizing advanced deep learning models, this study has produced notable outcomes, attaining a commendable level of precision of around 95% in both binary and multi-classification situations. The aforementioned results highlight the effectiveness and potential of the suggested methodology within the field of cybersecurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bpl完成签到,获得积分10
刚刚
刚刚
1秒前
Zlt发布了新的文献求助10
1秒前
1秒前
里苏特完成签到,获得积分10
2秒前
liu发布了新的文献求助10
3秒前
啦啦咔嘞完成签到,获得积分10
3秒前
Cleo完成签到 ,获得积分10
4秒前
LIU完成签到,获得积分10
4秒前
penny发布了新的文献求助10
5秒前
搜集达人应助Sinsoladad采纳,获得10
5秒前
Sepvvvvirtue发布了新的文献求助10
6秒前
廷烨完成签到,获得积分10
6秒前
6秒前
7秒前
shushu完成签到 ,获得积分10
7秒前
浮游应助WYN采纳,获得10
8秒前
烟花应助Ray采纳,获得10
8秒前
曹杨磊完成签到,获得积分10
10秒前
木木三发布了新的文献求助10
10秒前
坚强千筹完成签到 ,获得积分10
10秒前
11秒前
酷波er应助啊美采纳,获得10
11秒前
hys完成签到,获得积分10
11秒前
zero完成签到,获得积分10
11秒前
顾矜应助XY采纳,获得10
12秒前
12秒前
田様应助药神L采纳,获得10
12秒前
非我发布了新的文献求助10
13秒前
14秒前
Nathan完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
17秒前
李健的小迷弟应助Galato采纳,获得10
17秒前
倾听阳光完成签到 ,获得积分10
17秒前
lz完成签到,获得积分10
18秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244