AI for social science and social science of AI: A survey

分类 人工智能 计算社会学 透视图(图形) 计算机科学 社会科学教育 数据科学 社会学 科学教育 教育学
作者
R. F. Xu,Yingfei Sun,Mengjie Ren,Shiguang Guo,Ruotong Pan,Hongyu Lin,Le Sun,Xianpei Han
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103665-103665 被引量:72
标识
DOI:10.1016/j.ipm.2024.103665
摘要

Recent advancements in artificial intelligence, particularly with the emergence of large language models (LLMs), have sparked a rethinking of artificial general intelligence possibilities. The increasing human-like capabilities of AI are also attracting attention in social science research, leading to various studies exploring the combination of these two fields. In this survey, we systematically categorize previous explorations in the combination of AI and social science into two directions that share common technical approaches but differ in their research objectives. The first direction is focused on AI for social science, where AI is utilized as a powerful tool to enhance various stages of social science research. While the second direction is the social science of AI, which examines AI agents as social entities with their human-like cognitive and linguistic capabilities. By conducting a thorough review, particularly on the substantial progress facilitated by recent advancements in large language models, this paper introduces a fresh perspective to reassess the relationship between AI and social science, provides a cohesive framework that allows researchers to understand the distinctions and connections between AI for social science and social science of AI, and also summarizes state-of-art experiment simulation platforms to facilitate research in these two directions. We believe that with the ongoing advancement of AI technology and the increasing integration of intelligent agents into our daily lives, the significance of the combination of AI and social science will become even more prominent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到,获得积分10
刚刚
斯文败类应助魔幻的可乐采纳,获得10
刚刚
郭慧发布了新的文献求助10
1秒前
2秒前
2秒前
乐乐应助炙热小小采纳,获得10
2秒前
splatoon完成签到,获得积分10
3秒前
Tingting发布了新的文献求助10
3秒前
Kate发布了新的文献求助10
3秒前
3秒前
3秒前
斯文败类应助stone采纳,获得10
3秒前
小灰灰发布了新的文献求助10
3秒前
crowd_lpy完成签到,获得积分10
3秒前
Flaoun4发布了新的文献求助10
3秒前
5秒前
852应助梦茵采纳,获得10
5秒前
Culto发布了新的文献求助10
5秒前
TTOM完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Richard发布了新的文献求助10
7秒前
合适苗条发布了新的文献求助10
7秒前
内向苡完成签到,获得积分10
7秒前
7秒前
清风拂山岗完成签到,获得积分10
7秒前
8秒前
花誓lydia发布了新的文献求助10
8秒前
9秒前
Twonej应助ZLY采纳,获得30
10秒前
10秒前
123发布了新的文献求助10
11秒前
11秒前
烟花应助QGK采纳,获得30
11秒前
小冉发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
momo发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812