已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep multi-scale dilated convolution network for coronary artery segmentation

分割 计算机科学 比例(比率) 卷积(计算机科学) 人工智能 动脉 心脏病学 模式识别(心理学) 内科学 医学 地图学 地理 人工神经网络
作者
Yue Qiu,Senchun Chai,Enjun Zhu,Nan Zhang,Gaochang Zhang,Xin Zhao,Lingguo Cui,Ishrak M.D. Farhan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106021-106021 被引量:1
标识
DOI:10.1016/j.bspc.2024.106021
摘要

Automatic segmentation of coronary arteries is of great significance for the rapid and accurate detection of cardiovascular diseases. Currently, deep learning has been successfully applied in the field of coronary artery segmentation. However, the branch structure of coronary arteries is thin, and the contrast between the blood vessels and the background is relatively low, making branches difficult to identify and the false positive rate is high. In response to these challenges, we proposed a multi-scale dilated convolution and deep information extraction network based on unet, which we called 3D-MDCNET. Firstly, adaptive scale expansion convolution modules are designed based on different layers. The advantage is to expand the receptive field and extract a larger range of information, thereby improving the continuity of small branches, while avoiding excessive computational costs. Secondly, the information from different layers of the decoder in Unet is fused with the first-stage segmentation results. Using multi-scale information fusion to enhance information expression, and applying the depth information extraction module to refine the results, effectively reducing the false positive rate. Finally, we introduce deep supervision as a mechanism to mitigate vanishing and exploding gradient problems caused by deep models. By conducting experiments on a benchmark dataset of coronary artery segmentation, our method indeed improves the continuity of small branch segmentation results while reducing the false positive rate. The proposed method has good segmentation performance and generalization ability, outperforming multiple state-of-the-art algorithms on various indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
西1完成签到,获得积分10
2秒前
minya完成签到,获得积分10
2秒前
在水一方应助美美采纳,获得10
2秒前
科研通AI5应助upsoar采纳,获得10
3秒前
luckkit完成签到 ,获得积分10
4秒前
6秒前
7秒前
8秒前
8秒前
9秒前
无敌橙汁oh完成签到 ,获得积分10
9秒前
upsoar完成签到,获得积分10
10秒前
风中的老黑完成签到,获得积分10
10秒前
10秒前
欣喜宛海完成签到 ,获得积分10
10秒前
12秒前
12秒前
孤烟发布了新的文献求助10
12秒前
可爱的小桃完成签到,获得积分10
13秒前
无花果应助ytx采纳,获得10
14秒前
15秒前
喜气洋洋发布了新的文献求助10
16秒前
万能图书馆应助小鱼际,采纳,获得10
17秒前
upsoar发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
孤烟完成签到,获得积分20
20秒前
斯文败类应助超级气泡水采纳,获得10
21秒前
22秒前
调研昵称发布了新的文献求助10
24秒前
27秒前
ytx发布了新的文献求助10
28秒前
小蘑菇应助J11采纳,获得10
28秒前
李健应助伶俐的高烽采纳,获得10
29秒前
落雪完成签到,获得积分10
29秒前
33秒前
幸福大白发布了新的文献求助10
33秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491183
求助须知:如何正确求助?哪些是违规求助? 3077841
关于积分的说明 9150667
捐赠科研通 2770320
什么是DOI,文献DOI怎么找? 1520261
邀请新用户注册赠送积分活动 704543
科研通“疑难数据库(出版商)”最低求助积分说明 702221