Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一定会顺利完成签到,获得积分10
刚刚
深情安青应助lin采纳,获得10
刚刚
刚刚
刚刚
哈哈完成签到,获得积分20
刚刚
江楠发布了新的文献求助10
刚刚
1秒前
xingchenpang发布了新的文献求助10
1秒前
drDeng发布了新的文献求助10
1秒前
搜集达人应助000采纳,获得10
3秒前
4秒前
wanci应助尽职和喵子采纳,获得10
5秒前
文静的绯发布了新的文献求助10
5秒前
徐凤年发布了新的文献求助10
5秒前
swh发布了新的文献求助10
5秒前
5秒前
蜗牛完成签到,获得积分10
6秒前
木木兮完成签到 ,获得积分10
6秒前
顾矜应助缓慢笑珊采纳,获得10
6秒前
UMA发布了新的文献求助10
7秒前
浮游应助南海子采纳,获得10
8秒前
8秒前
FashionBoy应助drDeng采纳,获得10
9秒前
9秒前
9秒前
10秒前
kk完成签到,获得积分10
10秒前
SciGPT应助好了没了采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
慕青应助善良丹云采纳,获得10
11秒前
徐凤年完成签到 ,获得积分20
11秒前
13秒前
竹青完成签到 ,获得积分10
13秒前
温柔迎波发布了新的文献求助10
13秒前
Noah发布了新的文献求助10
14秒前
完美世界应助swh采纳,获得10
15秒前
kk发布了新的文献求助20
16秒前
丘比特应助1816013153采纳,获得10
16秒前
好了没了完成签到,获得积分10
16秒前
洋子发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091