Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵夏完成签到,获得积分10
刚刚
wanci应助飞荷采纳,获得10
1秒前
1秒前
jing发布了新的文献求助10
2秒前
明天完成签到,获得积分20
2秒前
2秒前
zain完成签到 ,获得积分10
2秒前
我是老大应助数值分析采纳,获得10
3秒前
3秒前
王小鱼完成签到,获得积分20
3秒前
3秒前
4秒前
wu完成签到,获得积分10
4秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
王小鱼发布了新的文献求助10
6秒前
1234发布了新的文献求助10
6秒前
6秒前
AidenZhang完成签到,获得积分10
7秒前
菜虫虫发布了新的文献求助10
7秒前
7秒前
Li发布了新的文献求助10
8秒前
jwj完成签到,获得积分10
9秒前
9秒前
丘比特应助jing采纳,获得10
9秒前
冯xiaoni发布了新的文献求助10
9秒前
吴妮妮发布了新的文献求助10
10秒前
愉快若烟发布了新的文献求助10
11秒前
浮游应助tyk采纳,获得10
11秒前
芋泥发布了新的文献求助10
12秒前
12秒前
松山文女士完成签到,获得积分10
12秒前
Aggie发布了新的文献求助200
13秒前
13秒前
11111完成签到,获得积分10
13秒前
nana发布了新的文献求助10
14秒前
可乐完成签到 ,获得积分10
15秒前
传奇3应助研友_赖冰凡采纳,获得10
16秒前
冯xiaoni完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142377
求助须知:如何正确求助?哪些是违规求助? 4340700
关于积分的说明 13518033
捐赠科研通 4180609
什么是DOI,文献DOI怎么找? 2292524
邀请新用户注册赠送积分活动 1293189
关于科研通互助平台的介绍 1235689