Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助渭水飞熊采纳,获得30
2秒前
7秒前
专注的念桃完成签到,获得积分10
9秒前
风趣的芒果完成签到,获得积分10
9秒前
13秒前
c1302128340完成签到,获得积分10
15秒前
JamesPei应助忐忑的红牛采纳,获得10
17秒前
大个应助Tsuki采纳,获得10
17秒前
DoctorXu完成签到,获得积分10
18秒前
嘻嘻完成签到,获得积分10
20秒前
Garnieta完成签到,获得积分10
21秒前
活力白亦完成签到 ,获得积分10
22秒前
Cwin完成签到,获得积分10
22秒前
23秒前
酷酷的麦片完成签到,获得积分10
23秒前
24秒前
科研通AI6应助令宏采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
27秒前
英吉利25发布了新的文献求助30
28秒前
29秒前
kingwill应助心灵美的不愁采纳,获得20
31秒前
31秒前
33秒前
34秒前
赘婿应助pangkuan采纳,获得10
36秒前
jiajx21发布了新的文献求助10
36秒前
37秒前
liuzy完成签到,获得积分10
37秒前
chris完成签到,获得积分10
40秒前
心灵美的不愁给心灵美的不愁的求助进行了留言
41秒前
田様应助鱼子不吃饭采纳,获得10
41秒前
novQ发布了新的文献求助10
42秒前
烟花应助norville采纳,获得10
44秒前
44秒前
agnes完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563647
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685308
捐赠科研通 4590492
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478