Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
我不困发布了新的文献求助10
1秒前
1秒前
逍遥完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
QiWei完成签到 ,获得积分10
2秒前
77发布了新的文献求助10
2秒前
Amanda完成签到,获得积分10
2秒前
3秒前
顾矜应助细腻的飞雪采纳,获得10
4秒前
4秒前
杳鸢应助不敢装睡采纳,获得10
4秒前
英姑应助喵姐采纳,获得10
5秒前
杳鸢应助不敢装睡采纳,获得10
5秒前
杳鸢应助不敢装睡采纳,获得10
5秒前
杳鸢应助不敢装睡采纳,获得10
5秒前
杳鸢应助不敢装睡采纳,获得30
5秒前
杳鸢应助不敢装睡采纳,获得30
5秒前
杳鸢应助不敢装睡采纳,获得30
5秒前
蔡佰航发布了新的文献求助10
5秒前
dan1029发布了新的文献求助10
5秒前
夏来应助搞怪平凡采纳,获得10
6秒前
充电宝应助实验室杂工采纳,获得10
7秒前
guoguo完成签到 ,获得积分10
7秒前
辣辣发布了新的文献求助20
7秒前
8秒前
香蕉觅云应助Decade2021采纳,获得10
9秒前
gaw2008完成签到,获得积分10
10秒前
10秒前
2017发布了新的文献求助10
10秒前
10秒前
捋顺爆炸头完成签到 ,获得积分10
11秒前
11秒前
传奇3应助ylq采纳,获得10
11秒前
12秒前
焱焱不忘完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462367
求助须知:如何正确求助?哪些是违规求助? 3055905
关于积分的说明 9049830
捐赠科研通 2745482
什么是DOI,文献DOI怎么找? 1506365
科研通“疑难数据库(出版商)”最低求助积分说明 696092
邀请新用户注册赠送积分活动 695620