已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡雅阳完成签到,获得积分10
刚刚
pwq发布了新的文献求助10
3秒前
nini发布了新的文献求助10
3秒前
一一完成签到,获得积分10
4秒前
汉堡包应助威武小猫咪采纳,获得10
7秒前
7秒前
11秒前
菜鸡游泳发布了新的文献求助10
12秒前
SiO2完成签到 ,获得积分0
13秒前
13秒前
君寻完成签到 ,获得积分10
14秒前
14秒前
14秒前
小蘑菇应助babalababa采纳,获得10
15秒前
15秒前
16秒前
中标发布了新的文献求助10
18秒前
18秒前
18秒前
公西凝芙发布了新的文献求助10
20秒前
22秒前
23秒前
23秒前
23秒前
Royal耗子完成签到,获得积分10
25秒前
haobhaobhaob发布了新的文献求助10
26秒前
27秒前
科研通AI5应助豆豆可采纳,获得10
27秒前
28秒前
Royal耗子发布了新的文献求助10
28秒前
慕青应助诺贝尔一直讲采纳,获得30
29秒前
公西凝芙完成签到,获得积分10
29秒前
科研通AI6应助弎夜采纳,获得30
29秒前
langqi发布了新的文献求助10
30秒前
Miya发布了新的文献求助30
30秒前
31秒前
haobhaobhaob完成签到,获得积分10
33秒前
凯蒂发布了新的文献求助10
34秒前
36秒前
哎健身发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542