亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵毛豆完成签到 ,获得积分10
3秒前
NSS完成签到,获得积分10
5秒前
6秒前
从容的丹南完成签到 ,获得积分10
6秒前
努力的淼淼完成签到 ,获得积分10
7秒前
8秒前
9秒前
沉默飞风发布了新的文献求助10
11秒前
CNSSCI发布了新的文献求助10
12秒前
Hello应助sangsang采纳,获得10
12秒前
小刘完成签到,获得积分10
13秒前
酷波er应助一辰不染采纳,获得10
14秒前
可靠蜗牛完成签到,获得积分10
19秒前
小蘑菇应助CNSSCI采纳,获得10
22秒前
大模型应助qiahao采纳,获得10
25秒前
Wdw2236完成签到 ,获得积分20
26秒前
31秒前
ZhaoW完成签到,获得积分10
32秒前
ZhaoW发布了新的文献求助10
36秒前
万能图书馆应助TingtingGZ采纳,获得10
43秒前
48秒前
48秒前
辣辣完成签到,获得积分10
55秒前
55秒前
xiaofan_www发布了新的文献求助10
55秒前
wanci应助无韶的月亮树采纳,获得10
55秒前
亚铁氰化钾完成签到,获得积分10
58秒前
TingtingGZ发布了新的文献求助10
1分钟前
可靠的一手完成签到 ,获得积分10
1分钟前
1分钟前
调皮的千万完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大个应助朝朝暮夕采纳,获得30
1分钟前
1分钟前
久9完成签到 ,获得积分10
1分钟前
望春风发布了新的文献求助10
1分钟前
Geist完成签到 ,获得积分10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476235
求助须知:如何正确求助?哪些是违规求助? 4577928
关于积分的说明 14363195
捐赠科研通 4505804
什么是DOI,文献DOI怎么找? 2468878
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126