Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正飞风发布了新的文献求助10
刚刚
先林应助11di采纳,获得10
刚刚
secret完成签到,获得积分10
1秒前
sansan发布了新的文献求助10
2秒前
斯文莺发布了新的文献求助10
2秒前
Reid完成签到 ,获得积分10
2秒前
kmelo发布了新的文献求助10
3秒前
淡然夏天关注了科研通微信公众号
3秒前
科研小呆瓜完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
科研通AI6应助迷人书蝶采纳,获得10
6秒前
李健应助阿雷采纳,获得10
6秒前
科研通AI6应助xixi采纳,获得10
7秒前
linlinyilulvdeng完成签到,获得积分10
7秒前
科研通AI2S应助尹辉采纳,获得10
7秒前
爱听歌老1完成签到,获得积分10
7秒前
8秒前
沈若南应助灯灯采纳,获得10
8秒前
9秒前
9秒前
9秒前
111发布了新的文献求助10
9秒前
9秒前
9秒前
谨慎的灵完成签到 ,获得积分20
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
勇敢牛牛发布了新的文献求助10
11秒前
11秒前
乐正飞风完成签到,获得积分20
12秒前
13秒前
13秒前
xueluxin完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565