Automated Pedestrian Tracking Based on Improved ByteTrack

行人 计算机科学 跟踪(教育) 人工智能 计算机视觉 运输工程 工程类 心理学 教育学
作者
Qiuxing Zhang,Fanghua Yang,Li Feng,Zhennan Fei,Yingjiang Xie,Jeremiah D. Deng
标识
DOI:10.1109/icct59356.2023.10419387
摘要

In order to augment the robustness of pedestrian tracking in video sequences, we offer an enhanced automatic pedestrian tracking method that is based on the ByteTrack framework. The objective of the proposed approach is to tackle the issue of missed detections and trajectory loss in pedestrian tracking due to dense occlusion. The achievement of multi-object pedestrian tracking is realized through the integration of YOLOX-CF, an enhanced iteration of YOLOX, in conjunction with the BYTE tracking approach. In order to improve the ability of the network to detect pedestrians in various places, we have incorporated the coordinate attention (CA) module into the feature extraction network of YOLOX. In addition, we want to tackle the complex issue of crowd occlusion in pedestrian objects by proposing the utilization of focus loss as a confidence loss function. The above function aims to achieve weight balance between positive and negative samples, hence enhancing the network's attention on problematic samples. The experimental results obtained from the MOT17 dataset demonstrate a notable enhancement in both the mean Average Precision (mAP) and Multiple Object Tracking Accuracy (MOTA) as compared to the first approach. We observe a notable enhancement of 3.1 percentage points in mAP and 3.4 percentage points in MOTA. Furthermore, with the transformation of the model into TensorRT, the rate of inference improves to 126 frames per second (FPS) when executed on a single 2080Ti GPU. The proposed methodology offers enhanced efficacy in real-time pedestrian tracking within the context of autonomous driving, beyond the capabilities of the original.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beizi完成签到,获得积分10
1秒前
Janus发布了新的文献求助10
3秒前
2224270676发布了新的文献求助10
3秒前
可爱丹彤发布了新的文献求助10
3秒前
王艺霖完成签到,获得积分10
4秒前
liugm发布了新的文献求助10
4秒前
香蕉静芙完成签到 ,获得积分10
5秒前
5秒前
所所应助Shuxueman采纳,获得10
5秒前
CipherSage应助冷静的衣采纳,获得10
6秒前
12334完成签到,获得积分10
6秒前
一颗桃子完成签到,获得积分10
6秒前
丘比特应助十一采纳,获得10
7秒前
李健应助朱静采纳,获得10
7秒前
浮游应助hss采纳,获得10
7秒前
xiaohunagya发布了新的文献求助10
7秒前
7秒前
aaaiii完成签到,获得积分10
10秒前
焱焱不忘完成签到,获得积分0
11秒前
易拉罐罐发布了新的文献求助10
11秒前
嘿嘿应助wjw采纳,获得10
12秒前
哈哈队长2号完成签到,获得积分10
12秒前
13秒前
嘻嘻哈哈完成签到 ,获得积分10
13秒前
每文完成签到,获得积分10
14秒前
sll完成签到 ,获得积分10
14秒前
活泼外绣完成签到,获得积分20
15秒前
晴天发布了新的文献求助10
16秒前
糕糕关注了科研通微信公众号
17秒前
Z_xy完成签到,获得积分10
18秒前
HNDuan完成签到,获得积分10
18秒前
18秒前
19秒前
come发布了新的文献求助30
22秒前
CipherSage应助游畅采纳,获得10
22秒前
yinshan完成签到 ,获得积分10
23秒前
24秒前
北陌完成签到 ,获得积分10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304943
求助须知:如何正确求助?哪些是违规求助? 4451126
关于积分的说明 13851149
捐赠科研通 4338459
什么是DOI,文献DOI怎么找? 2381900
邀请新用户注册赠送积分活动 1377021
关于科研通互助平台的介绍 1344418