Rolling bearing fault diagnosis based on multi-domain features and whale optimized support vector machine

方位(导航) 支持向量机 断层(地质) 鲸鱼 计算机科学 领域(数学分析) 人工智能 工程类 模式识别(心理学) 控制工程 控制理论(社会学) 地质学 数学 地震学 生物 数学分析 控制(管理) 渔业
作者
Bing Wang,Huimin Li,Xiong Hu,Wei Wang
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:3
标识
DOI:10.1177/10775463241231344
摘要

Rolling bearing is an important rotating support component in mechanical equipment. It is very prone to wear, defects, and other faults, which directly affect the reliable operation of mechanical equipment. Its running condition monitoring and fault diagnosis have always been a matter of concern to engineers and researchers. A rolling bearing fault diagnosis technique based on multi-domain feature and whale optimization algorithm-support vector machine (MDF-WOA-SVM) is proposed. Firstly, recursive analysis is performed on vibration signal and the recursive features are employed as nonlinear recursive feature vector including recursive rate (RR), deterministic rate (DET), recursive entropy (RE), and diagonal average length (DAL). Then, a comprehensive multi-domain feature vector is constructed by combining three time-domain features including root mean square, variance, and peak to peak. Finally, whale optimization algorithm (WOA) is introduced to optimize the penalty factor C and kernel function parameter g to construct the optimal WOA-SVM model. The rolling bearing datasets of Jiangnan University is employed for instance analysis, and the results show that the 10-CV accuracy of the technique proposed is good with an accuracy of 99%. Compared with recursive features or time-domain features, multi-domain features are more accurate and comprehensive in describing characters of the signal. Some popular supervised learning models are also introduced for comparison including K-nearest neighbor (KNN) and decision tree (DT), and the result shows that the proposed method has a higher accuracy and certain advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助30
1秒前
1秒前
KBYer完成签到,获得积分10
1秒前
FashionBoy应助阳阳采纳,获得10
1秒前
许多知识发布了新的文献求助10
2秒前
苏源智完成签到,获得积分10
2秒前
Andy完成签到 ,获得积分10
4秒前
明理晓霜发布了新的文献求助10
6秒前
ZHANGMANLI0422关注了科研通微信公众号
6秒前
M先生发布了新的文献求助30
7秒前
FashionBoy应助许多知识采纳,获得10
8秒前
Poyd完成签到,获得积分10
11秒前
11秒前
故意的傲玉应助tao_blue采纳,获得10
12秒前
12秒前
kid1912完成签到,获得积分0
12秒前
小马甲应助一网小海蜇采纳,获得10
15秒前
专一的笑阳完成签到 ,获得积分10
15秒前
xuesensu完成签到 ,获得积分10
19秒前
豌豆完成签到,获得积分10
20秒前
M先生完成签到,获得积分10
20秒前
21秒前
23秒前
科研通AI5应助sun采纳,获得10
23秒前
shitzu完成签到 ,获得积分10
24秒前
choco发布了新的文献求助10
26秒前
27秒前
李健的小迷弟应助sun采纳,获得10
27秒前
Jzhang应助liyuchen采纳,获得10
27秒前
魏伯安发布了新的文献求助30
27秒前
jjjjjj发布了新的文献求助30
29秒前
30秒前
伯赏诗霜发布了新的文献求助10
30秒前
糟糕的鹏飞完成签到 ,获得积分10
31秒前
31秒前
欢呼凡旋完成签到,获得积分10
32秒前
韩邹光完成签到,获得积分10
34秒前
xg发布了新的文献求助10
34秒前
35秒前
dktrrrr完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849