Rolling bearing fault diagnosis based on multi-domain features and whale optimized support vector machine

方位(导航) 支持向量机 断层(地质) 时域 计算机科学 特征(语言学) 人工智能 特征向量 极限学习机 算法 模式识别(心理学) 对角线的 地质学 数学 人工神经网络 地震学 计算机视觉 哲学 语言学 几何学
作者
Bing Wang,Huimin Li,Xiong Hu,Wei Wang
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
被引量:11
标识
DOI:10.1177/10775463241231344
摘要

Rolling bearing is an important rotating support component in mechanical equipment. It is very prone to wear, defects, and other faults, which directly affect the reliable operation of mechanical equipment. Its running condition monitoring and fault diagnosis have always been a matter of concern to engineers and researchers. A rolling bearing fault diagnosis technique based on multi-domain feature and whale optimization algorithm-support vector machine (MDF-WOA-SVM) is proposed. Firstly, recursive analysis is performed on vibration signal and the recursive features are employed as nonlinear recursive feature vector including recursive rate (RR), deterministic rate (DET), recursive entropy (RE), and diagonal average length (DAL). Then, a comprehensive multi-domain feature vector is constructed by combining three time-domain features including root mean square, variance, and peak to peak. Finally, whale optimization algorithm (WOA) is introduced to optimize the penalty factor C and kernel function parameter g to construct the optimal WOA-SVM model. The rolling bearing datasets of Jiangnan University is employed for instance analysis, and the results show that the 10-CV accuracy of the technique proposed is good with an accuracy of 99%. Compared with recursive features or time-domain features, multi-domain features are more accurate and comprehensive in describing characters of the signal. Some popular supervised learning models are also introduced for comparison including K-nearest neighbor (KNN) and decision tree (DT), and the result shows that the proposed method has a higher accuracy and certain advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swordshine完成签到,获得积分0
刚刚
D-L@rabbit完成签到 ,获得积分10
1秒前
alixy完成签到,获得积分10
5秒前
XY完成签到 ,获得积分10
7秒前
空白完成签到 ,获得积分10
8秒前
桃花源的瓶起子完成签到 ,获得积分10
9秒前
wzk完成签到,获得积分10
12秒前
PHI完成签到 ,获得积分10
13秒前
嗯嗯完成签到 ,获得积分10
13秒前
青水完成签到 ,获得积分10
13秒前
凌泉完成签到 ,获得积分10
14秒前
FF完成签到,获得积分20
14秒前
LaixS完成签到,获得积分10
15秒前
要笑cc完成签到,获得积分10
17秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
18秒前
宣宣宣0733完成签到,获得积分10
19秒前
qiaorankongling完成签到 ,获得积分10
21秒前
胡质斌完成签到,获得积分10
21秒前
耶耶完成签到,获得积分10
22秒前
天空完成签到,获得积分10
22秒前
稳重乌冬面完成签到 ,获得积分10
23秒前
濮阳灵竹完成签到,获得积分10
24秒前
buerzi完成签到,获得积分10
26秒前
猫吃蘑菇完成签到,获得积分20
28秒前
CMD完成签到 ,获得积分10
30秒前
keeptg完成签到 ,获得积分10
32秒前
婉孝完成签到,获得积分10
34秒前
徐梦曦完成签到 ,获得积分10
35秒前
整齐百褶裙完成签到 ,获得积分10
35秒前
cheong完成签到,获得积分10
37秒前
超级天磊完成签到,获得积分10
41秒前
42秒前
43秒前
乐观无心应助科研通管家采纳,获得150
45秒前
Jasper应助科研通管家采纳,获得10
45秒前
耍酷的小刺猬完成签到,获得积分10
45秒前
馆长应助科研通管家采纳,获得10
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
xzy998应助科研通管家采纳,获得10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188146
求助须知:如何正确求助?哪些是违规求助? 4372545
关于积分的说明 13613593
捐赠科研通 4225769
什么是DOI,文献DOI怎么找? 2317932
邀请新用户注册赠送积分活动 1316498
关于科研通互助平台的介绍 1266170