Rolling bearing fault diagnosis based on multi-domain features and whale optimized support vector machine

方位(导航) 支持向量机 断层(地质) 鲸鱼 计算机科学 领域(数学分析) 人工智能 工程类 模式识别(心理学) 控制工程 控制理论(社会学) 地质学 数学 地震学 生物 数学分析 控制(管理) 渔业
作者
Bing Wang,Huimin Li,Xiong Hu,Wei Wang
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
被引量:3
标识
DOI:10.1177/10775463241231344
摘要

Rolling bearing is an important rotating support component in mechanical equipment. It is very prone to wear, defects, and other faults, which directly affect the reliable operation of mechanical equipment. Its running condition monitoring and fault diagnosis have always been a matter of concern to engineers and researchers. A rolling bearing fault diagnosis technique based on multi-domain feature and whale optimization algorithm-support vector machine (MDF-WOA-SVM) is proposed. Firstly, recursive analysis is performed on vibration signal and the recursive features are employed as nonlinear recursive feature vector including recursive rate (RR), deterministic rate (DET), recursive entropy (RE), and diagonal average length (DAL). Then, a comprehensive multi-domain feature vector is constructed by combining three time-domain features including root mean square, variance, and peak to peak. Finally, whale optimization algorithm (WOA) is introduced to optimize the penalty factor C and kernel function parameter g to construct the optimal WOA-SVM model. The rolling bearing datasets of Jiangnan University is employed for instance analysis, and the results show that the 10-CV accuracy of the technique proposed is good with an accuracy of 99%. Compared with recursive features or time-domain features, multi-domain features are more accurate and comprehensive in describing characters of the signal. Some popular supervised learning models are also introduced for comparison including K-nearest neighbor (KNN) and decision tree (DT), and the result shows that the proposed method has a higher accuracy and certain advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助稳重的秋天采纳,获得10
1秒前
离心力发布了新的文献求助10
1秒前
贝利亚完成签到,获得积分10
3秒前
在水一方应助yy采纳,获得10
3秒前
3秒前
4秒前
7秒前
7秒前
7秒前
DHY发布了新的文献求助10
8秒前
9秒前
南瓜气气完成签到,获得积分10
9秒前
Dahai完成签到,获得积分20
9秒前
Coraline应助幽壑之潜蛟采纳,获得10
9秒前
10秒前
Akim应助木木采纳,获得10
11秒前
斯文败类应助难过的谷芹采纳,获得10
12秒前
书霂完成签到,获得积分10
13秒前
13秒前
wanci应助DHY采纳,获得10
13秒前
13秒前
斯文败类应助tifosi采纳,获得20
13秒前
英吉利25发布了新的文献求助10
14秒前
14秒前
勤劳雁发布了新的文献求助10
14秒前
香蕉觅云应助酷酷阑香采纳,获得10
14秒前
tomorrow完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
赘婿应助Cynthia.Z采纳,获得10
17秒前
天天快乐应助司念者你采纳,获得10
17秒前
linkoop发布了新的文献求助10
18秒前
郴郴发布了新的文献求助10
18秒前
Kerry61发布了新的文献求助10
19秒前
朴素慕灵完成签到 ,获得积分10
20秒前
打打应助迷人的问枫采纳,获得10
20秒前
20秒前
倩倩芊芊发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432