A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier BV]
卷期号:574: 117253-117253 被引量:4
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
1秒前
2秒前
独特的友琴完成签到 ,获得积分10
2秒前
无花果应助知性的采珊采纳,获得150
2秒前
共享精神应助Youth采纳,获得10
2秒前
量子星尘发布了新的文献求助10
6秒前
pzhzy123完成签到,获得积分20
6秒前
闫伊森完成签到,获得积分10
9秒前
11秒前
上官若男应助祁尒采纳,获得10
13秒前
15秒前
17秒前
能干觅夏完成签到 ,获得积分10
19秒前
春风发布了新的文献求助10
20秒前
ssx发布了新的文献求助10
23秒前
任老三发布了新的文献求助10
24秒前
77发布了新的文献求助10
24秒前
激昂的野猪骑士完成签到,获得积分10
25秒前
春风完成签到,获得积分10
28秒前
Lucas应助ssx采纳,获得30
31秒前
fanmo完成签到 ,获得积分0
31秒前
任老三完成签到,获得积分10
33秒前
33秒前
36秒前
任善若完成签到 ,获得积分10
37秒前
Jasper应助Liudi采纳,获得10
40秒前
42秒前
阳光凡儿发布了新的文献求助20
43秒前
现代的访曼应助Dky采纳,获得20
46秒前
77完成签到,获得积分20
47秒前
陶醉白柏发布了新的文献求助10
48秒前
科研通AI2S应助hhchhcmxhf采纳,获得10
49秒前
科研通AI2S应助巫马尔槐采纳,获得10
49秒前
49秒前
dyy完成签到 ,获得积分10
49秒前
49秒前
50秒前
omoily发布了新的文献求助10
53秒前
萧水白发布了新的文献求助100
54秒前
瑞曦完成签到,获得积分10
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110282
捐赠科研通 3233774
什么是DOI,文献DOI怎么找? 1787498
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172