A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助vae采纳,获得30
1秒前
pliciyir发布了新的文献求助10
1秒前
曲聋五发布了新的文献求助10
1秒前
乐观学姐完成签到,获得积分20
2秒前
3秒前
超级绫完成签到,获得积分10
3秒前
崇林同学完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
7秒前
共享精神应助znlion采纳,获得10
7秒前
凌乱发布了新的文献求助10
7秒前
暴躁的从露完成签到,获得积分10
7秒前
Hello应助iii采纳,获得30
8秒前
李健的小迷弟应助向阳1203采纳,获得10
10秒前
10秒前
月白发布了新的文献求助10
11秒前
banban完成签到,获得积分10
11秒前
11秒前
11秒前
李健的小迷弟应助pliciyir采纳,获得10
12秒前
12秒前
孟寐以求发布了新的文献求助10
13秒前
13秒前
jjh发布了新的文献求助10
14秒前
14秒前
靖柔完成签到,获得积分10
15秒前
15秒前
尤尤发布了新的文献求助30
17秒前
pyh发布了新的文献求助10
18秒前
18秒前
早睡早起发布了新的文献求助10
18秒前
18秒前
lyl发布了新的文献求助10
19秒前
cdercder发布了新的文献求助30
19秒前
标致的冬萱完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537527
求助须知:如何正确求助?哪些是违规求助? 4625009
关于积分的说明 14594275
捐赠科研通 4565491
什么是DOI,文献DOI怎么找? 2502468
邀请新用户注册赠送积分活动 1481035
关于科研通互助平台的介绍 1452224