A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
李健应助ppttaabb采纳,获得30
1秒前
yyyang发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
zzz627发布了新的文献求助10
5秒前
6秒前
husi发布了新的文献求助10
6秒前
背后寒烟发布了新的文献求助10
6秒前
大豆终结者完成签到,获得积分10
6秒前
6秒前
7秒前
研友_VZG7GZ应助重要的甜甜采纳,获得10
7秒前
科研通AI2S应助AUGKING27采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
zzrg完成签到,获得积分10
9秒前
9秒前
10秒前
yyyyy发布了新的文献求助10
10秒前
11秒前
yznfly举报whiteside求助涉嫌违规
11秒前
小白发布了新的文献求助10
12秒前
图图完成签到 ,获得积分10
12秒前
俏皮的老城完成签到 ,获得积分10
12秒前
李晨源发布了新的文献求助10
13秒前
cherish发布了新的文献求助10
14秒前
瓦尔迪发布了新的文献求助200
15秒前
黎咩e茹完成签到,获得积分10
15秒前
科研通AI6应助tjxx采纳,获得10
15秒前
May发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
排骨年糕完成签到 ,获得积分10
18秒前
思源应助超越好帅采纳,获得10
19秒前
linkman发布了新的文献求助100
20秒前
21秒前
李晨源完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649707
求助须知:如何正确求助?哪些是违规求助? 4779165
关于积分的说明 15050119
捐赠科研通 4808741
什么是DOI,文献DOI怎么找? 2571782
邀请新用户注册赠送积分活动 1528105
关于科研通互助平台的介绍 1486871