A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄小小关注了科研通微信公众号
1秒前
1秒前
1秒前
1秒前
仙女大王发布了新的文献求助10
1秒前
BareBear应助冰咖啡采纳,获得10
1秒前
1秒前
利妥昔发布了新的文献求助10
2秒前
思源应助ff采纳,获得10
3秒前
怂怂发布了新的文献求助10
3秒前
4秒前
OMO发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
高硕发布了新的文献求助10
5秒前
5秒前
脑洞疼应助猪猪猪采纳,获得10
6秒前
哈罗发布了新的文献求助10
6秒前
小鲨鱼完成签到,获得积分10
6秒前
XEZ发布了新的文献求助10
7秒前
上官若男应助www采纳,获得10
7秒前
niudayun给niudayun的求助进行了留言
7秒前
炙热尔阳发布了新的文献求助10
7秒前
7秒前
科研通AI6应助榕俊采纳,获得10
8秒前
CipherSage应助榕俊采纳,获得10
8秒前
斯文败类应助榕俊采纳,获得10
8秒前
Rachel完成签到,获得积分10
8秒前
fei发布了新的文献求助200
8秒前
8秒前
8秒前
8秒前
坚定剑成发布了新的文献求助10
9秒前
思源应助xl采纳,获得10
9秒前
华仔应助bubble采纳,获得10
9秒前
善学以致用应助从容听南采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731