A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助polystyrene采纳,获得10
1秒前
1秒前
大模型应助郭琳采纳,获得30
1秒前
a达完成签到,获得积分20
2秒前
jiangchang发布了新的文献求助10
2秒前
2秒前
852应助李蕤蕤采纳,获得10
2秒前
JamesPei应助自由钢铁侠采纳,获得10
3秒前
白金之星发布了新的文献求助10
3秒前
小二郎应助whj采纳,获得10
3秒前
3秒前
1111发布了新的文献求助10
3秒前
lixin发布了新的文献求助10
3秒前
谨慎的秋灵完成签到,获得积分10
4秒前
4秒前
程程程发布了新的文献求助10
4秒前
CAO完成签到,获得积分10
4秒前
4秒前
5秒前
GSW发布了新的文献求助10
5秒前
5秒前
柠檬01210完成签到,获得积分20
6秒前
6秒前
invisiable完成签到,获得积分10
6秒前
研友_VZG7GZ应助果冻布丁采纳,获得10
6秒前
慕青应助果冻布丁采纳,获得10
6秒前
脑洞疼应助阿巴阿巴采纳,获得10
6秒前
顺利白竹完成签到,获得积分10
7秒前
JamesPei应助guijie2015采纳,获得10
7秒前
Akim应助谨慎盼山采纳,获得10
7秒前
球球完成签到,获得积分10
8秒前
wenyudi发布了新的文献求助10
8秒前
糟糕的妙海完成签到,获得积分10
8秒前
fuchao发布了新的文献求助10
9秒前
千里完成签到,获得积分10
9秒前
9秒前
柠檬01210发布了新的文献求助10
10秒前
不卷心菜发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610985
求助须知:如何正确求助?哪些是违规求助? 4695395
关于积分的说明 14886920
捐赠科研通 4724004
什么是DOI,文献DOI怎么找? 2545430
邀请新用户注册赠送积分活动 1510161
关于科研通互助平台的介绍 1473126