已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有趣的银完成签到,获得积分10
1秒前
momo完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
可爱邓邓完成签到 ,获得积分10
6秒前
8秒前
两个轮发布了新的文献求助10
8秒前
靖旎发布了新的文献求助10
10秒前
Aaron完成签到 ,获得积分10
11秒前
灵巧伊发布了新的文献求助10
12秒前
紧张的书文完成签到 ,获得积分10
13秒前
走啊走应助Leslie采纳,获得30
17秒前
19秒前
19秒前
Matberry完成签到 ,获得积分10
20秒前
shinn发布了新的文献求助10
20秒前
21秒前
22秒前
娟娟完成签到 ,获得积分10
23秒前
芋泥发布了新的文献求助10
24秒前
24秒前
26秒前
31秒前
无恙完成签到,获得积分10
31秒前
金条完成签到,获得积分10
33秒前
佳佳发布了新的文献求助10
34秒前
iorpi完成签到,获得积分10
34秒前
南宫硕完成签到 ,获得积分10
35秒前
ff发布了新的文献求助10
36秒前
Owen应助YUE采纳,获得10
36秒前
KAZEN完成签到 ,获得积分10
38秒前
高贵碧凡完成签到 ,获得积分10
39秒前
两个轮完成签到,获得积分10
40秒前
缺心眼儿完成签到,获得积分10
41秒前
小羊咩完成签到 ,获得积分0
43秒前
Rolling完成签到 ,获得积分10
43秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424