A holistic framework for improving the prediction of reverse osmosis membrane performance using machine learning

海水淡化 反渗透 过程(计算) 预测建模 工艺工程 性能预测 机器学习 计算机科学 人工智能 工程类 化学 模拟 生物化学 操作系统
作者
Areej Mohammed,Hussam Alshraideh,Fatima Alsuwaidi
出处
期刊:Desalination [Elsevier]
卷期号:574: 117253-117253 被引量:20
标识
DOI:10.1016/j.desal.2023.117253
摘要

Accurate prediction and modeling of RO membranes performance is crucial in desalination processes for proper process control and operation. Existing models do not consider all process parameters, leading to less understanding of the parameter's importance. In this study, 5 non-ensemble and 7 ensemble machine learning models were employed to predict the performance of RO membrane. Data from a modern RO desalination plant in the UAE was utilized for the models' building. Thirteen input parameters, including operational parameters, water characteristic parameters, and time-dependent parameters, were used to predict salt rejection. The results suggested that ensemble techniques are more capable of predicting the performance of RO membranes. Among ensemble methods, the XGBoost model was found to outperform other models. Recursive feature elimination was integrated with Shapley additive explanation analysis to gain insights into the most influential predictors and confirm the model's ability to comprehend the RO membrane mechanism. The findings highlighted that five parameters are critical for predicting RO membrane performance and could be prioritized for future monitoring to provide timely membrane performance warnings: the membrane's age, feed water temperature, pressure, feed water flow, and chloride concentration. It also indicated that maintaining lower temperatures, increasing feed water pressure, and increasing feed flow can improve process efficiency. The optimal XGBoost model was found to have an outstanding predictive performance with a high R2 (94.75) and a low RMSE (0.181). Ultimately, the framework proposed by this study can serve as a tool to simplify and understand complex membrane processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds给Mona的求助进行了留言
2秒前
Lin完成签到,获得积分10
3秒前
hh完成签到,获得积分20
3秒前
linmo发布了新的文献求助10
4秒前
5秒前
煎蛋完成签到,获得积分10
5秒前
styrene应助nenoaowu采纳,获得10
6秒前
华仔应助shaishai采纳,获得10
7秒前
火星上的半梅完成签到,获得积分10
7秒前
7秒前
7秒前
fyattojsk应助liuw_tao采纳,获得30
8秒前
肖婷婷发布了新的文献求助10
8秒前
9秒前
10秒前
喜悦幻巧发布了新的文献求助10
10秒前
充电宝应助hh采纳,获得10
11秒前
12秒前
12秒前
lzr发布了新的文献求助10
14秒前
kkkk发布了新的文献求助10
14秒前
小书包完成签到 ,获得积分20
14秒前
赵凇熠完成签到,获得积分10
15秒前
15秒前
18秒前
daifei完成签到,获得积分10
20秒前
ttcc完成签到 ,获得积分20
21秒前
weiteman完成签到,获得积分10
22秒前
大个应助一口啵啵采纳,获得10
24秒前
可爱的函函应助zzzshy采纳,获得10
24秒前
25秒前
26秒前
29秒前
斯文败类应助zzz采纳,获得10
29秒前
yyds给Mona的求助进行了留言
29秒前
xuehuali发布了新的文献求助10
29秒前
bkagyin应助舒适的傲柔采纳,获得10
29秒前
sss2021完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818