已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
叁叁肆完成签到,获得积分10
3秒前
阿斯顿风格完成签到,获得积分10
4秒前
5秒前
lele发布了新的文献求助10
6秒前
浮游应助半喇柯基采纳,获得10
6秒前
羊_应助纯氧采纳,获得30
7秒前
ceng发布了新的文献求助10
7秒前
鬲木完成签到,获得积分20
8秒前
8秒前
changping应助程艾影采纳,获得10
9秒前
9秒前
千葉发布了新的文献求助10
11秒前
苏从筠发布了新的文献求助10
11秒前
laipuling发布了新的文献求助10
13秒前
15秒前
华仔应助lele采纳,获得10
17秒前
18秒前
酷波er应助gnn采纳,获得10
19秒前
19秒前
桐桐应助momo采纳,获得10
21秒前
啾啾发布了新的文献求助10
22秒前
ERIC发布了新的文献求助10
22秒前
laipuling完成签到,获得积分10
23秒前
纯氧完成签到,获得积分20
23秒前
23秒前
乐观的颦完成签到,获得积分10
23秒前
科目三应助千葉采纳,获得10
25秒前
宇森发布了新的文献求助10
26秒前
务实豪发布了新的文献求助10
26秒前
29秒前
务实豪完成签到,获得积分10
31秒前
34秒前
负责的皮卡丘应助董晓萱采纳,获得10
35秒前
35秒前
Hello应助xh采纳,获得10
37秒前
思源应助Lucides采纳,获得10
40秒前
大白薯完成签到,获得积分10
41秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076248
求助须知:如何正确求助?哪些是违规求助? 4295778
关于积分的说明 13385599
捐赠科研通 4117660
什么是DOI,文献DOI怎么找? 2254921
邀请新用户注册赠送积分活动 1259516
关于科研通互助平台的介绍 1192311