清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助读书的时候采纳,获得10
1秒前
开心每一天完成签到 ,获得积分10
13秒前
17秒前
23秒前
MM发布了新的文献求助10
28秒前
叛逆黑洞完成签到 ,获得积分10
28秒前
44秒前
三心草完成签到 ,获得积分10
58秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
智者雨人完成签到 ,获得积分10
1分钟前
优秀的媚颜完成签到 ,获得积分10
1分钟前
一个爱打乒乓球的彪完成签到 ,获得积分10
1分钟前
英姑应助读书的时候采纳,获得10
1分钟前
酷然完成签到,获得积分10
1分钟前
1分钟前
慕青应助读书的时候采纳,获得150
2分钟前
天真的棉花糖完成签到 ,获得积分10
2分钟前
2分钟前
顾城浪子完成签到,获得积分10
2分钟前
sobergod完成签到 ,获得积分10
2分钟前
輕瘋发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
酷波er应助輕瘋采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
牛马完成签到 ,获得积分10
2分钟前
西山菩提完成签到,获得积分10
2分钟前
Drlee完成签到 ,获得积分10
2分钟前
3分钟前
Marshall完成签到 ,获得积分10
3分钟前
3分钟前
Yidie完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
guan完成签到,获得积分10
3分钟前
桂花载酒少年游完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732639
求助须知:如何正确求助?哪些是违规求助? 5341407
关于积分的说明 15322394
捐赠科研通 4878072
什么是DOI,文献DOI怎么找? 2620935
邀请新用户注册赠送积分活动 1570076
关于科研通互助平台的介绍 1526836