Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unshouable完成签到,获得积分10
刚刚
kiska完成签到,获得积分10
刚刚
蓝白胖次哇完成签到,获得积分10
1秒前
快乐慕灵完成签到,获得积分10
3秒前
3秒前
黄景滨完成签到 ,获得积分10
3秒前
Aipoi完成签到,获得积分10
3秒前
Orange应助朴实问儿采纳,获得30
3秒前
黎其完成签到,获得积分10
3秒前
ghx完成签到 ,获得积分10
3秒前
goodbuhui完成签到,获得积分10
3秒前
灵巧的寄真完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
YY完成签到,获得积分10
6秒前
潇洒的思山完成签到,获得积分10
7秒前
Cker完成签到,获得积分10
8秒前
8秒前
於青易完成签到,获得积分10
9秒前
jerkran发布了新的文献求助10
9秒前
呆萌芙蓉完成签到 ,获得积分10
9秒前
HK完成签到 ,获得积分10
10秒前
嘉星糖完成签到,获得积分10
10秒前
楚昕越发布了新的文献求助10
11秒前
缥缈的初阳完成签到,获得积分10
11秒前
Star完成签到,获得积分10
11秒前
小泉发布了新的文献求助10
12秒前
Jennierubyjane完成签到,获得积分20
12秒前
ldy完成签到,获得积分10
12秒前
12秒前
Criminology34应助同瓜不同命采纳,获得10
13秒前
布枕头完成签到 ,获得积分10
14秒前
彭燕来完成签到,获得积分10
15秒前
hua完成签到,获得积分10
15秒前
幽默盼柳完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922