Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助34396992采纳,获得10
刚刚
lylyspeechless完成签到,获得积分10
刚刚
CR7应助FAN采纳,获得20
1秒前
YZH发布了新的文献求助10
1秒前
情怀应助酷酷依秋采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
星辰大海应助nobody采纳,获得10
2秒前
JY'完成签到,获得积分10
3秒前
健忘的小懒虫完成签到,获得积分10
3秒前
烟花应助科学徐采纳,获得10
3秒前
辞旧完成签到,获得积分10
3秒前
miselling完成签到,获得积分10
3秒前
青青草完成签到,获得积分10
4秒前
5秒前
聪慧的白猫完成签到,获得积分10
6秒前
6秒前
6秒前
轻松的雨旋完成签到,获得积分10
6秒前
复杂的皓轩完成签到,获得积分10
6秒前
顷禾完成签到,获得积分10
6秒前
情怀应助zxj采纳,获得10
6秒前
QC完成签到,获得积分10
6秒前
6秒前
yinch发布了新的文献求助20
7秒前
hail完成签到,获得积分10
7秒前
7秒前
Mida发布了新的文献求助10
7秒前
8秒前
我来文献求助了完成签到,获得积分10
8秒前
zcl完成签到,获得积分0
9秒前
Andy完成签到,获得积分10
9秒前
9秒前
Blummer完成签到,获得积分10
9秒前
xiaochenxiaochen完成签到,获得积分10
9秒前
NexusExplorer应助maoyue采纳,获得30
9秒前
FashionBoy应助llior_采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413855
求助须知:如何正确求助?哪些是违规求助? 4530759
关于积分的说明 14124756
捐赠科研通 4445980
什么是DOI,文献DOI怎么找? 2439329
邀请新用户注册赠送积分活动 1431435
关于科研通互助平台的介绍 1409123