Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102328-102328 被引量:3
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的网络完成签到 ,获得积分20
2秒前
小橘发布了新的文献求助10
2秒前
研友_VZG7GZ应助小越越采纳,获得10
3秒前
3秒前
ljq完成签到,获得积分10
4秒前
5秒前
海4015发布了新的文献求助10
5秒前
price发布了新的文献求助10
6秒前
ljq发布了新的文献求助10
6秒前
7秒前
852应助大胆的弼采纳,获得10
9秒前
第一军团没有秘密完成签到,获得积分10
10秒前
Whiaper完成签到,获得积分10
10秒前
科研通AI2S应助ljq采纳,获得10
11秒前
11秒前
小橘完成签到,获得积分10
11秒前
万能图书馆应助端庄之云采纳,获得10
12秒前
Anar发布了新的文献求助10
12秒前
wanci应助zfk采纳,获得10
12秒前
ZXQ111发布了新的文献求助10
12秒前
科目三应助漂亮幻莲采纳,获得10
14秒前
14秒前
price完成签到 ,获得积分10
15秒前
16秒前
18秒前
20秒前
清明雨上完成签到,获得积分10
21秒前
大胆的弼发布了新的文献求助10
22秒前
23秒前
李健应助doctorbba采纳,获得10
23秒前
自强不息完成签到,获得积分10
23秒前
summer发布了新的文献求助10
24秒前
24秒前
NexusExplorer应助Anar采纳,获得50
25秒前
26秒前
ding应助幽默迎蕾采纳,获得10
26秒前
winnie完成签到,获得积分10
26秒前
沉静翠霜完成签到,获得积分10
29秒前
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111049
求助须知:如何正确求助?哪些是违规求助? 2761242
关于积分的说明 7664649
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282417
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478