已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BA1完成签到 ,获得积分10
刚刚
adaniu完成签到,获得积分10
1秒前
十月完成签到 ,获得积分10
2秒前
Aipoi完成签到,获得积分10
2秒前
kevin1018发布了新的文献求助10
2秒前
qvB完成签到,获得积分10
2秒前
hjc完成签到,获得积分10
3秒前
范丞丞完成签到 ,获得积分10
3秒前
ewmmel完成签到 ,获得积分10
4秒前
艺术家完成签到 ,获得积分10
4秒前
墨辰完成签到 ,获得积分10
5秒前
小脸红扑扑完成签到 ,获得积分10
5秒前
monair完成签到 ,获得积分0
5秒前
5秒前
5秒前
Ning00000完成签到 ,获得积分10
5秒前
DY应助七七采纳,获得10
6秒前
贾学敏完成签到 ,获得积分10
6秒前
寒冷猕猴桃完成签到 ,获得积分10
7秒前
舒服的忆山完成签到,获得积分10
7秒前
小欧完成签到 ,获得积分10
7秒前
闷油瓶完成签到,获得积分10
7秒前
8秒前
自觉匪完成签到 ,获得积分10
9秒前
Leviathan完成签到 ,获得积分0
9秒前
遇上就这样吧完成签到,获得积分0
9秒前
伊笙完成签到 ,获得积分0
9秒前
9秒前
Garnieta完成签到,获得积分10
9秒前
9秒前
了晨完成签到 ,获得积分10
10秒前
Harlotte完成签到 ,获得积分10
10秒前
11秒前
Aipoi1完成签到,获得积分10
11秒前
Sam完成签到 ,获得积分10
12秒前
sci01发布了新的文献求助10
12秒前
wtc完成签到,获得积分10
12秒前
俭朴蜜蜂完成签到 ,获得积分10
12秒前
糊里糊涂完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610188
求助须知:如何正确求助?哪些是违规求助? 4016230
关于积分的说明 12434730
捐赠科研通 3697746
什么是DOI,文献DOI怎么找? 2038975
邀请新用户注册赠送积分活动 1071892
科研通“疑难数据库(出版商)”最低求助积分说明 955573

今日热心研友

salan
20
小明
20
DY
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10