Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102328-102328 被引量:3
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小精灵发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
科研通AI2S应助开心雪卉采纳,获得10
3秒前
无名发布了新的文献求助10
4秒前
忧郁大树发布了新的文献求助10
5秒前
7秒前
hujuan发布了新的文献求助10
7秒前
8秒前
宇宙尽头的餐馆完成签到,获得积分10
8秒前
博弈春秋发布了新的文献求助10
9秒前
9秒前
Rondab应助空岛与影采纳,获得30
9秒前
LQX2141发布了新的文献求助10
10秒前
11秒前
陈chen完成签到,获得积分10
11秒前
易达发布了新的文献求助10
11秒前
11秒前
12秒前
小卫卫发布了新的文献求助10
12秒前
TW完成签到,获得积分10
13秒前
13秒前
15秒前
香蕉觅云应助忧郁大树采纳,获得10
15秒前
zhh发布了新的文献求助10
15秒前
沐雪发布了新的文献求助10
16秒前
CodeCraft应助yukriyy采纳,获得10
16秒前
yck关闭了yck文献求助
16秒前
16秒前
17秒前
Lucas应助耿教授采纳,获得10
18秒前
李爱国应助hujuan采纳,获得10
18秒前
Tina发布了新的文献求助10
19秒前
20秒前
万能图书馆应助易达采纳,获得10
22秒前
梦想家发布了新的文献求助30
22秒前
23秒前
星辰大海应助刻苦的晓槐采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049