Enhancing vehicle ride comfort through deep reinforcement learning with expert-guided soft-hard constraints and system characteristic considerations

强化学习 计算机科学 加速度 模型预测控制 控制工程 天钩 主动悬架 执行机构 控制(管理) 控制理论(社会学) 人工智能 工程类 经典力学 物理 阻尼器 簧载质量
作者
Cheng Wang,Xiaoxian Cui,Shijie Zhao,Xinran Zhou,Yaqi Song,Yang Wang,Konghui Guo
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102328-102328 被引量:20
标识
DOI:10.1016/j.aei.2023.102328
摘要

Currently, the research on controlling vehicle ride comfort primarily revolves around utilizing traditional algorithms for active or semi-active control of suspension systems. However, these methods often lack adaptability and necessitate a substantial allocation of human and material resources for system calibration and parameter tuning. With the advancement of cutting-edge computational methods, such as artificial intelligence (AI), being applied in engineering, new opportunities have arisen to tackle knowledge-intensive tasks like suspension control. This study aims to enhance vehicle ride comfort by proposing an active suspension control method that integrates deep reinforcement learning (DRL) while considering system characteristics. Firstly, we construct a Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture to systematically explore control policies. Secondly, we propose an expert-guided soft-hard constraints model (TD3-SH) that synergistically incorporates multi-scale information such as displacement, velocity, acceleration, and control force. Additionally, in practical engineering applications, we introduce action delay mechanisms and hard constraint modules to address time delay and actuator dynamic constraints, thereby alleviating the challenges associated with subsequent parameter adjustments and other knowledge-intensive tasks. Finally, simulations demonstrate the effective mitigation of body vibrations in the low-frequency range and the subsequent improvement of ride comfort by TD3-SH. In comparison to the deep deterministic policy gradient (DDPG), TD3, and model predictive control (MPC) baselines, the proposed method showcases control performance improvements of 54.8%, 35.5%, and 18.3%, respectively. Moreover, the method exhibits ride comfort optimization exceeding 85% across diverse road conditions, showcasing its exceptional generalization and adaptive capacity. Furthermore, the optimization amount exceeding 58% can be sustained despite the constraints of time delay and actuator dynamics. Evidently, the proposed algorithm holds significant potential for engineering applications and is uniquely suited for complex tasks in the vehicle industry characterized by high uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊喔发布了新的文献求助10
刚刚
刚刚
时间9完成签到,获得积分10
刚刚
刚刚
monly应助阿里嘎多采纳,获得10
刚刚
刚刚
Rui发布了新的文献求助10
刚刚
1秒前
慕慕完成签到 ,获得积分10
1秒前
蒸盐粥发布了新的文献求助10
1秒前
时光发布了新的文献求助10
1秒前
酷波er应助xiaowang采纳,获得10
1秒前
孟严青发布了新的文献求助20
2秒前
清秀皓轩发布了新的文献求助10
2秒前
3秒前
hhj发布了新的文献求助10
3秒前
3秒前
黑沧浪亭发布了新的文献求助10
4秒前
一声空发布了新的文献求助10
4秒前
4秒前
李丽发布了新的文献求助10
4秒前
orixero应助美丽元风采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
热心的忆山完成签到,获得积分10
5秒前
飞快的邴发布了新的文献求助10
5秒前
CC完成签到,获得积分10
6秒前
无花果应助coc采纳,获得10
6秒前
奶爸回家完成签到,获得积分10
6秒前
慕青应助小杨采纳,获得10
6秒前
乐乐应助shaco采纳,获得50
7秒前
略略完成签到,获得积分10
7秒前
所所应助孙帅采纳,获得10
7秒前
打打应助123采纳,获得10
7秒前
8秒前
Hello应助优雅翎采纳,获得10
8秒前
桐桐应助蒸盐粥采纳,获得10
8秒前
8秒前
小伙伴完成签到,获得积分10
9秒前
123完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003