Can external work during walking in scoliosis patients be estimated from spatiotemporal parameters?

脊柱侧凸 柯布角 无症状的 统计的 物理医学与康复 生物力学 回归分析 线性回归 医学 畸形 物理疗法 口腔正畸科 数学 统计 外科 解剖
作者
Y. Delpierre,Stéphane Armand
出处
期刊:Clinical Biomechanics [Elsevier]
卷期号:112: 106183-106183
标识
DOI:10.1016/j.clinbiomech.2024.106183
摘要

Abstract

Background

Patients with scoliosis present gait impairments compared to healthy subjects. Clinically, spine deformity is evaluated with Cobb angle, a standard measurement to determine and track the progression of scoliosis. Scoliosis is a biomechanical trouble, dependant of external forces and muscular activity. External work is currently analyzed in patients with scoliosis because this work sums up consequences and evolutions of spine deformity. Habitually, biomechanics approach is used to compute this work. For asymptomatic subjects, a regression model let to compute external work. So, considering the area of research to facilitate the follow-up at lower cost, this regression function could be applied to patients with scoliosis but need to be validated. Research question: can external work during walking in scoliosis patients be estimated from spatiotemporal parameters with a regression model?

Method

This retrospective study included twenty untreated patients with idiopathic scoliosis and sixteen asymptomatic participants. We used a regression model defined in case of asymptomatic subjects in literature and proposed a new specific model in case of patients with scoliosis.

Findings

The external work in patients with scoliosis calculated with the Wirta's regression eq. (0.23 ± 0.04 J.kg−1.m−1) was underestimated compared to the external work calculated using a biomechanical method (0.33 ± 0.06 J.kg−1.m−1). A new regression model including Cobb angle and spatio-temporal parameter presents a high coefficient of determination.

Interpretation

In opposition to biomechanical method, our new model let to compute external work without expensive gait laboratory. This specific model is more reliable than the model developed from asymptomatic subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
斯文败类应助怕黑的凝旋采纳,获得10
刚刚
牧林听风发布了新的文献求助10
1秒前
Yoyo发布了新的文献求助10
1秒前
Gg完成签到,获得积分10
1秒前
1秒前
花生完成签到 ,获得积分10
1秒前
1秒前
FashionBoy应助伶俐骁采纳,获得10
1秒前
啦啦啦完成签到,获得积分10
1秒前
2秒前
ajia发布了新的文献求助10
2秒前
Ava应助baiyang99采纳,获得10
2秒前
邬不污完成签到,获得积分10
2秒前
3秒前
喵喵张完成签到 ,获得积分10
3秒前
六尺巷发布了新的文献求助10
3秒前
戴鹿角王冠的拉斯特完成签到,获得积分10
3秒前
NexusExplorer应助炸炸桃采纳,获得10
4秒前
元问晴完成签到,获得积分10
4秒前
4秒前
4秒前
林菲菲完成签到,获得积分10
5秒前
Warming完成签到 ,获得积分10
5秒前
领导范儿应助chenjie采纳,获得10
5秒前
汉堡包应助min采纳,获得10
5秒前
6秒前
CHSLN发布了新的文献求助10
6秒前
愿好应助gao采纳,获得10
6秒前
缓慢孤菱完成签到,获得积分20
6秒前
可耐的靖完成签到,获得积分10
7秒前
图图完成签到,获得积分10
7秒前
啦啦啦发布了新的文献求助10
7秒前
7秒前
如晴完成签到,获得积分10
7秒前
阿翼发布了新的文献求助10
7秒前
飞鸟完成签到,获得积分10
7秒前
李李完成签到,获得积分10
8秒前
国泰民安完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207