Refined composite multiscale dynamic causality diagram: a novel time-series analysis approach and its application in fault diagnosis of rotating machinery

计算机科学 极限学习机 熵(时间箭头) 特征提取 稳健性(进化) 算法 人工智能 计算复杂性理论 模式识别(心理学) 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Wei Dong,Shuqing Zhang,Shanshan Song,Xiaowen Zhang,Xiang Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (5): 2980-3006
标识
DOI:10.1177/14759217231215351
摘要

Entropy-based feature extraction methods have been widely used in the fault diagnosis of rotating machinery, but the entropy-based methods still have the defects of poor noise robustness, weak feature extraction, and low computational efficiency. To solve this problem, this article proposes a fault diagnosis method based on refined composite multiscale dynamic causal diagram (RCMSDCD) and local receptive field extreme learning machine (LRFELM). First, a novel feature extraction method, named dynamic causal diagram (DCD), is proposed to comprehensively quantify static and dynamic complexity. DCD is obtained by combining generalized inverse fractional order entropy with complexity–entropy causal plane. Then, combined with the coarse-graining process, DCD is extended to a multiscale analysis called RCMSDCD to complement the feature description at cross-time scales. Third, RCMSDCD features are input into LRFELM classifier for fault recognition of rotating machinery. The effectiveness of the proposed RCMSDCD-LRFELM method is verified by the Paderborn University bearing test and real wind turbine gear signals. The results show that this method has the highest classification accuracy of 100% with high computational efficiency, good stability, and strong generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
吨吨发布了新的文献求助10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
zzz发布了新的文献求助30
刚刚
慕青应助科研通管家采纳,获得10
刚刚
LewisAcid应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
LewisAcid应助科研通管家采纳,获得10
1秒前
zky发布了新的文献求助10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
皇甫成发布了新的文献求助10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小蘑菇应助Onechch采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095