Establish of air pollutants and greenhouse gases emission inventory and co-benefits of their reduction of transportation sector in Central China

温室气体 环境科学 污染物 排放清单 中国 环境工程 自然资源经济学 空气污染 环境保护 业务 空气污染物 地理 经济 化学 生态学 有机化学 生物 考古
作者
Xinran Zhang,Shasha Yin,Xuan Lu,Yali Liu,Tiantian Wang,Binglin Zhang,Zhuo Li,Wenju Wang,M. Kong,Keying Chen
出处
期刊:Journal of Environmental Sciences-china [Elsevier BV]
卷期号:150: 604-621 被引量:8
标识
DOI:10.1016/j.jes.2023.12.025
摘要

Recently, the transportation sector in China has gradually become the main source of urban air pollution and primary driver of carbon emissions growth. Considering air pollutants and greenhouse gases come from the same emission sources, it is necessary to establish an updated high-resolution emission inventory for the transportation sector in Central China, the most polluted region in China. The inventory includes on-road mobile, non-road mobile, oil storage and transportation, and covers 9 types of air pollutants and 3 types of greenhouse gases. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the emissions of pollutants were predicted for the period from 2020 to 2035 in different scenarios. Results showed that in 2020, emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, BC, OC, CO2, CH4, and N2O in Henan Province were 27.5, 503.2, 878.6, 20.1, 17.4, 222.1, 21.5, 9.4, 2.9, 92,077.9, 6.0, and 10.4 kilotons, respectively. Energy demand and pollutant emissions in Henan Province are simulated under four scenarios (Baseline Scenario (BS), Pollution Abatement Scenario (PA), Green Transportation Scenario (GT), and Reinforcing Low Carbon Scenario (RLC)). The collaborative emission reduction effect is most significant in the RLC scenario, followed by the GT scenario. By 2035, under the RLC scenario, energy consumption and emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, CO2, CH4, and N2O are projected to decrease by 72.0%, 30.0%, 55.6%, 56.0%, 38.6%, 39.7%, 51.5%, 66.1%, 65.5%, 55.4%, and 52.8%, respectively. This study provides fundamental data support for subsequent numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lpp32完成签到,获得积分10
刚刚
英俊的铭应助典雅的丹寒采纳,获得10
刚刚
1秒前
2秒前
沉静的歌曲完成签到,获得积分10
2秒前
2秒前
燕子发布了新的文献求助10
3秒前
北陆小猫完成签到,获得积分10
4秒前
Lucas应助六便士采纳,获得10
4秒前
光轮2000发布了新的文献求助10
5秒前
喵喵给喵喵的求助进行了留言
7秒前
yyy发布了新的文献求助10
9秒前
一个爱吃爱睡的团子完成签到,获得积分10
9秒前
9秒前
caitSith完成签到,获得积分10
9秒前
冷静的小甜瓜完成签到,获得积分10
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
Pendragon应助科研通管家采纳,获得30
11秒前
11秒前
桐桐应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
李健的小迷弟应助狐狐采纳,获得10
12秒前
顺心怜寒完成签到,获得积分10
12秒前
慕青应助爰采唐矣采纳,获得50
12秒前
江望雪完成签到 ,获得积分10
13秒前
精明问筠完成签到 ,获得积分10
13秒前
13秒前
小马甲应助图治采纳,获得10
14秒前
梓榆发布了新的文献求助20
14秒前
宝海青发布了新的文献求助10
15秒前
15秒前
霸气保温杯完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089