CuTe supported on graphitic carbon nitride nanocomposite as an effective electrocatalyst for oxidation of water in basic media

过电位 塔菲尔方程 电催化剂 化学 石墨氮化碳 化学工程 纳米复合材料 分解水 介孔材料 电解水 纳米技术 电化学 催化作用 纳米材料 纳米孔 电解 材料科学 电极 光催化 有机化学 物理化学 工程类 电解质
作者
Dalal A. Alshammari,Hala H. Abd El‐Gawad,Muhammad Abdullah,Sumaira Manzoor,Zeinhom M. El‐Bahy,Huda A. Alzahrani,Nadeem Raza,A.M.A. Henaish,С. В. Труханов,M.I. Sayyed,Д.И. Тишкевич,А.В. Труханов
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:953: 118018-118018 被引量:24
标识
DOI:10.1016/j.jelechem.2023.118018
摘要

For the purpose of using water electrolysis to yield hydrogen and to solve this issue of energy shortage, the highly active electrocatalysts for water (H2O) oxidation must be developed. For this purpose, the potential of copper-based nanomaterials electrocatalysts are completely investigated due to its good conductivity. In this study, we account the hydrothermal synthesis of novel hierarchical CuTe-gCN nanocomposite, and numerous characterization techniques are utilized to check the crystal structure, morphology, textual properties and oxidation states as well. On the other hand, the electrocatalytic performance and durability for OER in basic conditions are confirmed by different electrochemical testing. Furthermore, among all the CuTe-gCN nano-catalyst have exceptional electrocatalytic performance, like, a less overpotential around 277 mV, that is less than 312 and 326 mV for CuTe and gCN, respectively to get a current density (Cd) around 10 mAcm−2. On the other hand, it is also showing results almost similar to RuO2 having overpotential of 269 mV as well. In addition, the as prepared CuTe-gCN nanohybrid shows an impressively smaller Tafel value of 53 mVdec-1 to show the fast electron transfer process. Hence, the remarkable results are because of large surface area, accessible mesoporous structure, the remarkable electrical conductivity of gCN shows synergistic effect with CuTe was responsible for high catalytic performance, and may be useful for many other applications in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hello应助酷酷的起眸采纳,获得10
1秒前
2秒前
奋斗小鸽子完成签到,获得积分20
2秒前
Esther发布了新的文献求助10
2秒前
今后应助一个采纳,获得10
3秒前
充电宝应助GG采纳,获得10
3秒前
justdoit发布了新的文献求助10
4秒前
书记发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
呐呐发布了新的文献求助10
5秒前
老北京发布了新的文献求助10
5秒前
5秒前
5秒前
SSY发布了新的文献求助10
6秒前
6秒前
6秒前
yuqinghui98发布了新的文献求助50
7秒前
汉堡包应助季末默相依采纳,获得10
8秒前
顾矜应助123采纳,获得10
8秒前
通~发布了新的文献求助10
9秒前
9秒前
10秒前
蒽蒽完成签到,获得积分20
10秒前
11秒前
隐形曼青应助yogurt采纳,获得10
11秒前
11秒前
失眠思雁发布了新的文献求助10
11秒前
xxyqddx发布了新的文献求助10
12秒前
zj发布了新的文献求助10
13秒前
13秒前
Max完成签到,获得积分20
13秒前
QYQX完成签到,获得积分10
14秒前
14秒前
激动的小之完成签到,获得积分10
14秒前
英俊的铭应助默默飞阳采纳,获得10
14秒前
桥洛完成签到,获得积分10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390769
求助须知:如何正确求助?哪些是违规求助? 3002173
关于积分的说明 8802231
捐赠科研通 2688779
什么是DOI,文献DOI怎么找? 1472739
科研通“疑难数据库(出版商)”最低求助积分说明 681152
邀请新用户注册赠送积分活动 673901