Controls of groundwater-dependent vegetation coverage in the yellow river basin, china: Insights from interpretable machine learning

构造盆地 地下水 中国 植被(病理学) 水文学(农业) 流域 地质学 环境科学 水资源管理 地理 地图学 地貌学 考古 岩土工程 医学 病理
作者
Taiya Bai,Xu‐Sheng Wang,Pengfei Han
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130747-130747 被引量:3
标识
DOI:10.1016/j.jhydrol.2024.130747
摘要

Groundwater plays an important role in maintaining vegetation structure and ecological functions in arid regions. However, the relationship between groundwater depth (GD) and fractional vegetation cover (FVC) in a large region with various climate conditions remains poorly understood, primarily due to the complex influence of multiple environmental factors. Machine learning method, a powerful tool for identifying complex and nonlinear processes, has been used to rank explanatory variables on the regional-scale vegetation distribution, while missing the vegetation-groundwater relationship. We developed machine learning models via the extreme gradient boosting (XGBoost) to identify key controls of groundwater-dependent vegetation cover in the Yellow River Basin, China. Two XGBoost models, A and B, were constructed for shallow (GD ≤ 24.5 m) and deep (GD > 24.5 m) groundwater pixels, respectively, with the same sample number on the resolution of 1 km. Shapely additive explanations (SHAP) method is employed to assess the contributions of climatic, topographic, and edaphic features on FVC. Through an enhanced feature selection method using multicollinearity analysis and the Boruta algorithm, we found that the top four important features in both models were precipitation (P), saturated water content (SWC), air temperature (TA), and potential evapotranspiration (PET) during the growing season. The difference between models A and B indicates the influence of groundwater on vegetation. Shallower groundwater leads to smaller sensitivity of FVC to the precipitation when the monthly P in the growing season is smaller than 68.0 mm, and can also reduce the sensitivity of FVC to the air temperature when the average TA is lower than 13.5℃ in the growing season. This study suggests an effective method for recognizing the groundwater effect on the vegetation cover from mixed influences of environmental controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZJ完成签到 ,获得积分10
刚刚
刚刚
1秒前
3秒前
白水完成签到,获得积分10
3秒前
saisyo发布了新的文献求助10
3秒前
Feng5945发布了新的文献求助10
4秒前
4秒前
谨慎忆之完成签到,获得积分20
4秒前
5秒前
5秒前
Jason发布了新的文献求助10
6秒前
Hello应助Ma采纳,获得10
6秒前
7秒前
8秒前
Luu完成签到 ,获得积分10
9秒前
123发布了新的文献求助10
10秒前
10秒前
机智傲白发布了新的文献求助10
11秒前
saisyo完成签到,获得积分10
11秒前
所所应助茉莉采纳,获得10
11秒前
muyeliu2024发布了新的文献求助10
11秒前
yaoyao应助韦老虎采纳,获得10
12秒前
妩媚的半雪关注了科研通微信公众号
12秒前
龙俊利发布了新的文献求助10
13秒前
13秒前
kui发布了新的文献求助10
13秒前
yaoyao应助韦老虎采纳,获得10
14秒前
溶胶完成签到 ,获得积分10
14秒前
KYS666完成签到,获得积分10
14秒前
斯文媚颜发布了新的文献求助10
14秒前
Hello应助jery采纳,获得30
14秒前
15秒前
Fox完成签到,获得积分10
15秒前
思源应助Heng采纳,获得20
15秒前
16秒前
爱吃奥利奥完成签到,获得积分10
16秒前
123完成签到,获得积分20
16秒前
秋迎夏完成签到,获得积分0
18秒前
zouzou完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290081
求助须知:如何正确求助?哪些是违规求助? 2926791
关于积分的说明 8429310
捐赠科研通 2598119
什么是DOI,文献DOI怎么找? 1417733
科研通“疑难数据库(出版商)”最低求助积分说明 659830
邀请新用户注册赠送积分活动 642243